ANSWER
1 bell shape
2 to find probability when sampling
EXPLANATION
1 In a normal distribution, the mode,mean and median are equal.
As a result, the distribution is neither skewed to the right or left.
The shape of the normal distribution looks like a bell.
That is why it is also called the bell curve.
2. The area under the normal curve is 1.
The line of symmetry of the bell shaped distribution divides it into two halves with area 0.5 each.
The normal curve is therefore used to find the probabilities of a sample distributions.
Answer: The answer is 13/54
Step-by-step explanation:
52 people out of 216 do not want the stadium, so the fraction would be 52/216. 52/216 simplified would be 13/54.
SOLUTION
From the question, the center of the hyperbola is

a is the distance between the center to vertex, which is -1 or 1, and
c is the distance between the center to foci, which is -2 or 2.
b is given as
![\begin{gathered} b^2=c^2-a^2 \\ b^2=2^2-1^2 \\ b=\sqrt[]{3} \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20b%5E2%3Dc%5E2-a%5E2%20%5C%5C%20b%5E2%3D2%5E2-1%5E2%20%5C%5C%20b%3D%5Csqrt%5B%5D%7B3%7D%20%5Cend%7Bgathered%7D)
But equation of a hyperbola is given as

Substituting the values of a, b, h and k, we have
![\begin{gathered} \frac{(x-0)^2}{1^2}-\frac{(y-0)^2}{\sqrt[]{3}^2}=1 \\ \frac{x^2}{1}-\frac{y^2}{3}=1 \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20%5Cfrac%7B%28x-0%29%5E2%7D%7B1%5E2%7D-%5Cfrac%7B%28y-0%29%5E2%7D%7B%5Csqrt%5B%5D%7B3%7D%5E2%7D%3D1%20%5C%5C%20%5Cfrac%7Bx%5E2%7D%7B1%7D-%5Cfrac%7By%5E2%7D%7B3%7D%3D1%20%5Cend%7Bgathered%7D)
Hence the answer is
The formula for axis of symmetry is -b/2a.
For f(x):
0/2(4)
0/8
Axis of symmetry= 0
For g(x)
-(-8)/2(1)
8/2
Axis of symmetry= 4
For h(x)
-(-12)/2(-3)
12/-6
Axis of symmetry= -2
Order from least to greatest: -2, 0, 4
Final answer: h(x), f(x), g(x)