Answer:
<u><em>The area of the irregular figure is 140 sq. ft.</em></u>
Step-by-step explanation:
<em>Triangle:
</em>
<em>
</em>
<em>16-12=4
</em>
<em>
</em>
<em>6 x 4 = 24
</em>
<em>
</em>
<em>24 x 0.5 = 12
</em>
<em>
</em>
<em>Triangle = 12
</em>
<em>
</em>
<em>Rectangle:
</em>
<em>
</em>
<em>16 x 8
</em>
<em>
</em>
<em>= 128
</em>
<em>
</em>
<em>Rectangle = 128
</em>
<em>
</em>
<em>Total figure:
</em>
<em>
</em>
<em>128+12
</em>
<em>
</em>
<em>= 140
</em>
<u><em>Plzz give me brainlist!!!</em></u><u>
</u>
Answer:
Step-by-step explanation:
Answer:
5y - 6x = 53
Step-by-step explanation:
Given the segment with endpoints M(−3, 7) and N(9, −3), let us find the slope first
m = y2-y1/x2-x1
m = -3-7/9-(-3)
m = -10/12
m = -5/6
Since the unknown line forms a perpendicular bisector, the slope of the unknown line will be:
m = -1/(-5/6)
m = 6/5
To get the intercept of the line, we will substitute m = 6/5 and any point on the line say (-3, 7) into the equation y = mx+c
7 = 6/5 (-3)+c
7 = -18/5 + c
c = 7 + 18/5
c = (35+18)/5
c = 53/5
Substitute m = 6/5 and c = 53/5
y = 6/5 x + 53/5
multiply through by 5
5y = 6x + 53
5y - 6x = 53
hence the point-slope equation of the perpendicular bisector is 5y - 6x = 53