1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
valina [46]
2 years ago
10

What is the answer is it a Yes or No HELP!!! This is at test and I only need help on this problem

Mathematics
1 answer:
allsm [11]2 years ago
4 0

Answer:

Yes

Step-by-step explanation:

y is said to be a function of x. where x is the independent variable and y is the dependent variable. The height of the stacks is y and the number of cups in the stack is x, so yes, we can say that the height of the stack is a function of the number of cups in the stack.

You might be interested in
Help??????????????????????????
agasfer [191]
X = 180 - 150 = 30°

z = 180 - 100 = 80°

y = 180 - 30 - 80 = 70°

Answer: x = 30, y = 70, z = 80


6 0
3 years ago
Read 2 more answers
25y + 150x = 250<br><br> find the Variables
fomenos

Answer: Step-by-step explanation:

25y + 150x = 250 (÷25)

y+6x=10

y=10-6x

example x=1 y=4

8 0
2 years ago
Simplify u^2+3u/u^2-9<br> A.u/u-3, =/ -3, and u=/3<br> B. u/u-3, u=/-3
VashaNatasha [74]
  The correct answer is:  Answer choice:  [A]:
__________________________________________________________
→  "\frac{u}{u-3} " ;  " { u \neq ± 3 } " ; 

          →  or, write as:  " u / (u − 3) " ;  {" u ≠ 3 "}  AND:  {" u ≠ -3 "} ; 
__________________________________________________________
Explanation:
__________________________________________________________
 We are asked to simplify:
  
  \frac{(u^2+3u)}{(u^2-9)} ;  


Note that the "numerator" —which is:  "(u² + 3u)" — can be factored into:
                                                      →  " u(u + 3) " ;

And that the "denominator" —which is:  "(u² − 9)" — can be factored into:
                                                      →   "(u − 3) (u + 3)" ;
___________________________________________________________
Let us rewrite as:
___________________________________________________________

→    \frac{u(u+3)}{(u-3)(u+3)}  ;

___________________________________________________________

→  We can simplify by "canceling out" BOTH the "(u + 3)" values; in BOTH the "numerator" AND the "denominator" ;  since:

" \frac{(u+3)}{(u+3)} = 1 "  ;

→  And we have:
_________________________________________________________

→  " \frac{u}{u-3} " ;   that is:  " u / (u − 3) " ;  { u\neq 3 } .
                                                                                and:  { u\neq-3 } .

→ which is:  "Answer choice:  [A] " .
_________________________________________________________

NOTE:  The "denominator" cannot equal "0" ; since one cannot "divide by "0" ; 

and if the denominator is "(u − 3)" ;  the denominator equals "0" when "u = -3" ;  as such:

"u\neq3" ; 

→ Note:  To solve:  "u + 3 = 0" ; 

 Subtract "3" from each side of the equation; 

                       →  " u + 3 − 3 = 0 − 3 " ; 

                       → u =  -3 (when the "denominator" equals "0") ; 
 
                       → As such:  " u \neq -3 " ; 

Furthermore, consider the initial (unsimplified) given expression:

→  \frac{(u^2+3u)}{(u^2-9)} ;  

Note:  The denominator is:  "(u²  − 9)" . 

The "denominator" cannot be "0" ; because one cannot "divide" by "0" ; 

As such, solve for values of "u" when the "denominator" equals "0" ; that is:
_______________________________________________________ 

→  " u² − 9 = 0 " ; 

 →  Add "9" to each side of the equation ; 

 →  u² − 9 + 9 = 0 + 9 ; 

 →  u² = 9 ; 

Take the square root of each side of the equation; 
 to isolate "u" on one side of the equation; & to solve for ALL VALUES of "u" ; 

→ √(u²) = √9 ; 

→ | u | = 3 ; 

→  " u = 3" ; AND;  "u = -3 " ; 

We already have:  "u = -3" (a value at which the "denominator equals "0") ; 

We now have "u = 3" ; as a value at which the "denominator equals "0"); 

→ As such: " u\neq 3" ; "u \neq -3 " ;  

or, write as:  " { u \neq ± 3 } " .

_________________________________________________________
6 0
3 years ago
Passes through (8,7) and (0,0)
quester [9]

Answer:

6,3

Step-by-step explanation:

8 0
3 years ago
Read 2 more answers
Which statement describes the graph of f(x)=-4x^3-28x^2-32x+64
lord [1]
The only that has the shape of the one below.

y = -4(x^3 + 7x^2+8x - 16)
Let x = 1
y = - 4(1 + 7 + 8 - 16)
y = 0

y = -4(x -1)(x^2 + 8x + 16)
y = -4(x - 1)(x + 4)^2


7 0
3 years ago
Read 2 more answers
Other questions:
  • Choose the right answer. Jim Pine wants to learn golf. He makes the following purchases: Used Clubs $150 Bag $75 Golf Balls and
    10·1 answer
  • Show that 2x^2 + 7x + 7 is positive for all real values of x.<br> PLEASE HELP
    6·1 answer
  • Solve the problem.
    7·1 answer
  • 4-b/12=-3<br> What's b equal
    14·1 answer
  • A rectangular room has a length 8m and breadth 4m.find area of the room
    5·2 answers
  • If f(x) = 6x3 – 11x2
    9·1 answer
  • Find the numerical value of the log expression.<br> log a = 11<br> log b = -5<br> log c= 6
    6·1 answer
  • X - 2y = 4. This in slope intercept forms. I need steps too.
    14·1 answer
  • Rewrite using the power of the product property.<br><br>81x^4y^8​
    12·1 answer
  • HELP ASAP! GIVING BRAINLIEST TO BEST ANSWERS FOR THESE 2 QUESTIONS!
    6·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!