Hello!
To solve this problem, we will use a system of equations. We will have one number be x and the other y. We will use substitutions to solve for each variable.
x+y=9
x=2y-9
To solve for the two numbers, we need to solve the top equation. The second equation shows that x=2y-9. In the first equation, we can replace 2y-9 for x and solve.
2y-9+y=9
3y-9=9
3y=18
y=6
We now know the value of y. Now we need to find x. We can plug in 6 for y in the second equation to find x.
x=2·6-9
x=12-9
x=3
Just to check, we will plug these two numbers into the first equation.
3+6=9
9=9
Our two numbers are three and six.
I hope this helps!
7.
(2b^2+7b^2+b)+(2b^2-4b-12)
(9b^2+b)+(2b^2-4b-12)
9b^2+b+2b^2-4b-12
11b^2+b-4b-12
11b^2-3b-12
8.
(7g^3+4g-1)+(2g^2-6g+2)
7g^3+4g-1+2g^2-6g+2
7g^3-2g-1+2g^2+2
7g^3-2g+1+2g^2
7g^3+2g^2-2g+1
Hope this helps!
The parallel lines have the same slope.
The slope-intercept form: y = mx + b
m - a slope.
We have 6x + y = 4 |subtract 6x from both sides
y = -6x + 4 → m = -6.
The slope-point form:

We have m = -6 and (-2, 3).
Substitute:

<h3>Answer: 6x + y = -9.</h3>