Answer:
1.
5
x
−
2
y
=
4
; (−1, 1)
2.
3
x
−
4
y
=
10
; (2, −1)
3.
−
3
x
+
y
=
−
6
; (4, 6)
4.
−
8
x
−
y
=
24
; (−2, −3)
5.
−
x
+
y
=
−
7
; (5, −2)
6.
9
x
−
3
y
=
6
; (0, −2)
7.
1
2
x
+
1
3
y
=
−
1
6
; (1, −2)
8.
3
4
x
−
1
2
y
=
−
1
; (2, 1)
9.
4
x
−
3
y
=
1
;
(
1
2
,
1
3
)
10.
−
10
x
+
2
y
=
−
9
5
;
(
1
5
,
1
10
)
11.
y
=
1
3
x
+
3
; (6, 3)
12.
y
=
−
4
x
+
1
; (−2, 9)
13.
y
=
2
3
x
−
3
; (0, −3)
14.
y
=
−
5
8
x
+
1
; (8, −5)
15.
y
=
−
1
2
x
+
3
4
;
(
−
1
2
,
1
)
16.
y
=
−
1
3
x
−
1
2
;
(
1
2
,
−
2
3
)
17.
y
=
2
; (−3, 2)
18.
y
=
4
; (4, −4)
19.
x
=
3
; (3, −3)
20.
x
=
0
; (1, 0)
Find the ordered pair solutions given the set of x-values.
21.
y
=
−
2
x
+
4
; {−2, 0, 2}
22.
y
=
1
2
x
−
3
; {−4, 0, 4}
23.
y
=
−
3
4
x
+
1
2
; {−2, 0, 2}
24.
y
=
−
3
x
+
1
; {−1/2, 0, 1/2}
25.
y
=
−
4
; {−3, 0, 3}
26.
y
=
1
2
x
+
3
4
; {−1/4, 0, 1/4}
27.
2
x
−
3
y
=
1
; {0, 1, 2}
28.
3
x
−
5
y
=
−
15
; {−5, 0, 5}
29.
–
x
+
y
=
3
; {−5, −1, 0}
30.
1
2
x
−
1
3
y
=
−
4
; {−4, −2, 0}
31.
3
5
x
+
1
10
y
=
2
; {−15, −10, −5}
32.
x
−
y
=
0
; {10, 20, 30}
Find the ordered pair solutions, given the set of y-values.
33.
y
=
1
2
x
−
1
; {−5, 0, 5}
34.
y
=
−
3
4
x
+
2
; {0, 2, 4}
35.
3
x
−
2
y
=
6
; {−3, −1, 0}
36.
−
x
+
3
y
=
4
; {−4, −2, 0}
37.
1
3
x
−
1
2
y
=
−
4
; {−1, 0, 1}
38.
3
5
x
+
1
10
y
=
2
; {−20, −10, −5}
Part B: Graphing Lines
Given the set of x-values {−2, −1, 0, 1, 2}, find the corresponding y-values and graph them.
39.
y
=
x
+
1
40.
y
=
−
x
+
1
41.
y
=
2
x
−
1
42.
y
=
−
3
x
+
2
43.
y
=
5
x
−
10
44.
5
x
+
y
=
15
45.
3
x
−
y
=
9
46.
6
x
−
3
y
=
9
47.
y
=
−
5
48.
y
=
3
Find at least five ordered pair solutions and graph.
49.
y
=
2
x
−
1
50.
y
=
−
5
x
+
3
51.
y
=
−
4
x
+
2
52.
y
=
10
x
−
20
53.
y
=
−
1
2
x
+
2
54.
y
=
1
3
x
−
1
55.
y
=
2
3
x
−
6
56.
y
=
−
2
3
x
+
2
57.
y
=
x
58.
y
=
−
x
59.
−
2
x
+
5
y
=
−
15
60.
x
+
5
y
=
5
61.
6
x
−
y
=
2
62.
4
x
+
y
=
12
63.
−
x
+
5
y
=
0
64.
x
+
2
y
=
0
65.
1
10
x
−
y
=
3
66.
3
2
x
+
5
y
=
30
Part C: Horizontal and Vertical Lines
Find at least five ordered pair solutions and graph them.
67.
y
=
4
68.
y
=
−
10
69.
x
=
4
70.
x
=
−
1
71.
y
=
0
72.
x
=
0
73.
y
=
3
4
74.
x
=
−
5
4
75. Graph the lines
y
=
−
4
and
x
=
2
on the same set of axes. Where do they intersect?
76. Graph the lines
y
=
5
and
x
=
−
5
on the same set of axes. Where do they intersect?
77. What is the equation that describes the x-axis?
78. What is the equation that describes the y-axis?
Part D: Mixed Practice
Graph by plotting points.
79.
y
=
−
3
5
x
+
6
80.
y
=
3
5
x
−
3
81.
y
=
−
3
82.
x
=
−
5
83.
3
x
−
2
y
=
6
84.
−
2
x
+
3
y
=
−
12
Step-by-step explanation:
I think it’s the third one and the last two. I’m sorry if it’s wrong
The answer is C that is X=7 and X=-1
multiple x through the given equation to get rid of a fraction. It will be

After that bring 6X to the LHS of the equation
so that it will look like the general equation that is

Use the quadratic formula (or any other approach to find the values of x
You will arrive at

Answer: -7b² + 2b - 8
Step-by-step explanation:
<u>Given expression</u>
3 - b (7b + 2) + 3b - (11 - b)
<u>Expand parentheses and apply the distributive property if necessary</u>
=3 - b · 7b - b · 2 + 3b - 11 + b
=3 - 7b² - 2b + 3b - 11 + b
<u>Combine like terms</u>
=-7b² + (3b - 2b + b) + (3 - 11)
=
Hope this helps!! :)
Please let me know if you have any questions
Answer:
x= 
Step-by-step explanation: