1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
masha68 [24]
3 years ago
5

Starting with a constant velocity of 45 km/h, a car accelerates for 35 seconds at an acceleration of 0.45 m/s2 . What is the vel

ocity of the car at the end of the period of 35 seconds of acceleration?
Physics
1 answer:
DENIUS [597]3 years ago
5 0

Answer:

28.3 m/s

Explanation:

Vi = 45 Km/h = 12.5 m/s

Vf - Vi = at

Vf -12.5 = 0.45(35)

Vf= 28.3 m/s

You might be interested in
A 50-cm wire placed in an east-west direction is moved horizontally to the north with a speed of 2.0 m/s. the horizontal compone
Strike441 [17]

When a wire is moved inside uniform magnetic field then its free electrons will experience magnetic force on it due to which wire will have potential difference at its ends.

Now here we will have magnetic field due to earth and wire is moving in this constant field so induced emf is given by formula

EMF = v.(B x L)

given that

B = 25\mu Tj - 50\mu Tk

v = 2 m/s j

L = 0.50 m (-i)

now by using the above formula we will have

EMF = 2(j) .(25\mu j - 50\mu k) x (-0.50 i)

EMF = 2(j) .(12.5\mu k + 25\mu j)

EMF = 50 \mu Volts

5 0
3 years ago
Read 2 more answers
If vector A ⃗  has components A x and A y and makes an angle θ with the +x axis, then
ziro4ka [17]
Then the tangent of angle-Θ is (Ay / Ax).
5 0
3 years ago
Issac and Blaise decide to race. They both start at the same position at the same time. Issac runs at 2m/s but decides to take a
FromTheMoon [43]

Let the Blaise runs for time "t" to complete the race

so the total distance he moved is given by

d_1 = 1* t

Now Issac runs for time t = "t - 2*60"

because it took rest for 2 minutes

d_2 = 2*(t - 120)

now it is given that Blaise wins by 10 m distance

d_1 - d_2 = 10

1* t - 2*(t - 120) = 10

t - 2t + 240 = 10

t = 230 s

now the distance moved by Blaise is given by

d_1 = 1*230 = 230 m

6 0
3 years ago
what was the acceleration of the cart with Low fan speed cm/s squared? what was the acceleration of the cart with medium fan spe
ArbitrLikvidat [17]

Explanation:

The attached figure shows data for the cart speed, distance and time.

For low fan speed,

Distance, d = 500 cm

Time, t = 7.4 s

Average velocity,

v=\dfrac{d}{t}\\\\v=\dfrac{500}{7.4}\\\\v=67.56\ cm/s

Acceleration,

a=\dfrac{v}{t}\\\\a=\dfrac{67.56}{7.4}\\\\a=9.12\ cm/s^2

For medium fan speed,

Distance, d = 500 cm

Time, t = 6.4 s

Average velocity,

v=\dfrac{d}{t}\\\\v=\dfrac{500}{6.4}\\\\v=78.12\ cm/s

Acceleration,

a=\dfrac{v}{t}\\\\a=\dfrac{78.12}{6.4}\\\\a=12.2\ cm/s^2

For high fan speed,

Distance, d = 500 cm

Time, t = 5.6 s

Average velocity,

v=\dfrac{d}{t}\\\\v=\dfrac{500}{5.6}\\\\v=89.28\ cm/s

Acceleration,

a=\dfrac{v}{t}\\\\a=\dfrac{89.28}{5.6}\\\\a=15.94\ cm/s^2

Hence, this is the required solution.

8 0
3 years ago
Read 2 more answers
2. A 20 cm object is placed 10cm in front of a convex lens of focal length 5cm. Calculate
adoni [48]

Answer:

<u> </u><u>»</u><u> </u><u>Image</u><u> </u><u>distance</u><u> </u><u>:</u>

{ \tt{ \frac{1}{v}  +  \frac{1}{u} =  \frac{1}{f}  }} \\

  • v is image distance
  • u is object distance, u is 10 cm
  • f is focal length, f is 5 cm

{ \tt{ \frac{1}{v} +  \frac{1}{10} =  \frac{1}{5}   }} \\  \\  { \tt{ \frac{1}{v}  =  \frac{1}{10} }} \\  \\ { \tt{v = 10}} \\  \\ { \underline{ \underline{ \pmb{ \red{ \: image \: distance \: is \: 10 \: cm \:  \: }}}}}

<u> </u><u>»</u><u> </u><u>Magnification</u><u> </u><u>:</u>

• Let's derive this formula from the lens formula:

{ \tt{ \frac{1}{v}  +  \frac{1}{u} =  \frac{1}{f}  }} \\

» Multiply throughout by fv

{ \tt{fv( \frac{1}{v} +  \frac{1}{u} ) = fv( \frac{1}{f}  )}} \\   \\ { \tt{ \frac{fv}{v}  +  \frac{fv}{u}  =  \frac{fv}{f} }} \\  \\  { \tt{f + f( \frac{v}{u} ) = v}}

• But we know that, v/u is M

{ \tt{f + fM = v}} \\  { \tt{f(1 +M) = v }} \\ { \tt{1 +M =  \frac{v}{f}  }} \\  \\ { \boxed{ \mathfrak{formular :  } \: { \tt{ M =  \frac{v}{f}  - 1 }}}}

  • v is image distance, v is 10 cm
  • f is focal length, f is 5 cm
  • M is magnification.

{ \tt{M =  \frac{10}{5} - 1 }} \\  \\ { \tt{M = 5 - 1}} \\  \\ { \underline{ \underline{ \pmb{ \red{ \: magnification \: is \: 4}}}}}

<u> </u><u>»</u><u> </u><u>Nature</u><u> </u><u>of</u><u> </u><u>Image</u><u> </u><u>:</u>

  • Image is magnified
  • Image is erect or upright
  • Image is inverted
  • Image distance is identical to object distance.
4 0
2 years ago
Other questions:
  • A small airplane is sitting at rest on the ground. Its center of gravity is 2.58 m behind the nose of the airplane, the front wh
    15·1 answer
  • Instantaneous speed is measured
    14·1 answer
  • What work is done by the electric force when the charge moves a distance of 2.70 m at an angle of 45.0∘ downward from the horizo
    6·1 answer
  • Which device manages the flow of current in an electric circuit?
    14·2 answers
  • PLEASE HELP ME
    7·1 answer
  • jupiter has a mass of 1,898,000,000,000,000,000,000,000,000 kg. How would this number be expressed in scientific notation?​
    7·1 answer
  • Ty has two pet mice. One mouse has the gene for black fur color and the other mouse has the gene for white fur color. The female
    7·1 answer
  • In a control system, an accelerometer consists of a 4.63-g object sliding on a calibrated horizontal rail. A low-mass spring att
    7·1 answer
  • A long conducting cylinder of radius a carrying a total charge +q is surrounded by a
    9·1 answer
  • A jogger runs 5.0 km on a straight trail at an angle of 60° south of west. What is the southern component of the run rounded to
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!