M=18
explication: both of the angles are 90 degrees, 90-33=57, 3(18)+3=57
Answer:
B and C
Step-by-step explanation:
We are given a rectangular prism that consists of 10 cubes. Each cube = 1 cm³. The volume of rectangular prism given = 10cm³.
Let's find out which of the options has same volume (10cm³) as that of the given rectangular prism.
Option A has 15 cubes = 15 cm³ in volume
Option B has 10 cubes = 10 cm³ in volume
Option C has 10 cubes also = 10 cm³ in volume
Option D has 12 cubes = 12 cm³
The rectangular prisms that have the same volume (10 cm³) with the given rectangular prism are option B and C.
Answer:
V = 904.32cm3
Step-by-step explanation:
V = r*r*pi*h
= 6*6*3.14*8 = 904.32cm3
Answer:
Complete the following statements. In general, 50% of the values in a data set lie at or below the median. 75% of the values in a data set lie at or below the third quartile (Q3). If a sample consists of 500 test scores, of them 0.5*500 = 250 would be at or below the median. If a sample consists of 500 test scores, of them 0.75*500 = 375 would be at or above the first quartile (Q1).
Step-by-step explanation:
The median separates the upper half from the lower half of a set. So 50% of the values in a data set lie at or below the median, and 50% lie at or above the median.
The first quartile(Q1) separates the lower 25% from the upper 75% of a set. So 25% of the values in a data set lie at or below the first quartile, and 75% of the values in a data set lie at or above the first quartile.
The third quartile(Q3) separates the lower 75% from the upper 25% of a set. So 75% of the values in a data set lie at or below the third quartile, and 25% of the values in a data set lie at or the third quartile.
The answer is:
Complete the following statements. In general, 50% of the values in a data set lie at or below the median. 75% of the values in a data set lie at or below the third quartile (Q3). If a sample consists of 500 test scores, of them 0.5*500 = 250 would be at or below the median. If a sample consists of 500 test scores, of them 0.75*500 = 375 would be at or above the first quartile (Q1).
45 divided by 50= 90%
0.9*16.50=14.85