Answer:
(5 - y) ^3 = 125 - 75y + 15y^2 - y^3
Step-by-step explanation:
Binomial expression
1
1. 1
1. 2. 1
1. 3. 3. 1 --------power of 3
( 5 - y) ^3
( 5 - y) (5 - y) (5 - y)
( a + b) ^3 = a^3 + 3a^2b + 3ab^2 + b^3
a = 5
b = -y
( 5 - y) ^2 = ( 5 - y) (5 - y)
= 5( 5 - y) - y(5 - y)
= 25 - 5y - 5y + y^2
=(25-10y+y^2)
( 25 - 10y + y^2)( 5 - y)
= 5(25 - 10y + y^2) - y( 25 - 10y + y^2)
= 125 - 50y + 5y^2 - 25y + 10y^2 - y^3
Collect the like terms
= 125 - 50y - 25y + 5y^2 + 10y^2 - y^3
= 125 - 75y + 15y^2 - y^3
The quadratic that has the roots x=8 and x=-5 is
x^2-3x-40
Hope this helps you! (:
-Hamilton1757
Answer:
A
Step-by-step explanation:
Answer:
a) Matrix B = ![\left[\begin{array}{c}5\\7\\9\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D5%5C%5C7%5C%5C9%5Cend%7Barray%7D%5Cright%5D)
b) Matrix AB = ![\left[\begin{array}{c}2525\\3620\\2845\\3705\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D2525%5C%5C3620%5C%5C2845%5C%5C3705%5Cend%7Barray%7D%5Cright%5D)
c) $12,695
Step-by-step explanation:
Matrix A = ![\left[\begin{array}{ccc}225&110&70\\95&160&225\\280&65&110\\0&240&225\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D225%26110%2670%5C%5C95%26160%26225%5C%5C280%2665%26110%5C%5C0%26240%26225%5Cend%7Barray%7D%5Cright%5D)
a) Matrix B = ![\left[\begin{array}{c}5\\7\\9\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D5%5C%5C7%5C%5C9%5Cend%7Barray%7D%5Cright%5D)
Gross Receipt = AB
.
= ![\left[\begin{array}{c}2525\\3620\\2845\\3705\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D2525%5C%5C3620%5C%5C2845%5C%5C3705%5Cend%7Barray%7D%5Cright%5D)
c) Total revenue is the sum of receipts from 4 cinemas given in part b
Hence,
Total revenue = $2525 + $3620 + $2845 + $3705 = $12,695
Answer:
f(g(9)) = 945/16
Step-by-step explanation:
To find f(g(x)), you have to substitute g(x) wherever there is an x in f(x).
g(x) = x + 3/4
f(x) = x² - 4x - 3
f(g(x)) = (x + 3/4)² - 4(x + 3/4) - 3
f(g(x)) = x² + 3/2x + 9/16 - 4x + 3 - 3
f(g(x)) = x² - 5/2x + 9/16 + 3 - 3
f(g(x)) = x² - 5/2x + 9/16
Now, put a 9 wherever there is an x in f(g(x)).
f(g(9)) = (9)² - 5/2(9) + 9/16
f(g(9)) = 81 - 5/2(9) + 9/16
f(g(9)) = 81 - 45/2 + 9/16
f(g(9)) = 117/2 + 9/16
f(g(9)) = 945/16