F = t ⇨ df = dt
dg = sec² 2t dt ⇨ g = (1/2) tan 2t
⇔
integral of t sec² 2t dt = (1/2) t tan 2t - (1/2) integral of tan 2t dt
u = 2t ⇨ du = 2 dt
As integral of tan u = - ln (cos (u)), you get :
integral of t sec² 2t dt = (1/4) ln (cos (u)) + (1/2) t tan 2t + constant
integral of t sec² 2t dt = (1/2) t tan 2t + (1/4) ln (cos (2t)) + constant
integral of t sec² 2t dt = (1/4) (2t tan 2t + ln (cos (2t))) + constant ⇦ answer
Answer:

Step-by-step explanation:
Given the equation

comparing the equation with the slope-intercept form
Here,
so the slope of the line is m = -2/5
As we know that the slope of the perpendicular line is basically the negative reciprocal of the slope of the line,
so the slope of the perpendicular line will be: 5/2
Therefore, the point-slope form of the equation of the perpendicular line that goes through (2,-8) is:



subtract 8 from both sides


Answer:
$18
Step-by-step explanation:
15*.2=3
15+3=18
The haircut is $18 with tip included.
Answer:
The unlimited mileage plan would save money for Lia from 410 miles onwards.
Step-by-step explanation:
Since Lia can rent a van for either $ 90 per day with unlimited mileage or $ 50 per day with 250 free miles and an extra 25 ¢ for each mile over 250, to determine for what number of miles traveled in one day would the unlimited mileage plan save Lia money, the following calculation must be performed:
90.25 - 50 = 40.25
40.25 / 0.25 = 161
161 + 250 = 411
Therefore, the unlimited mileage plan would save money for Lia from 410 miles onwards.