The answer to this equation is 48.
The graph at option 1 shows the given inequality y < x² + 1. The domain and range of the given inequality is {x: x ∈ (-∞, ∞)} and {y: y ∈ [1, ∞)}.
<h3>How to graph an inequality?</h3>
The steps to graph an inequality equation are:
- Solve for the variable y in the given equation
- Graph the boundary line for the inequality
- Shade the region that satisfies the inequality.
<h3>Calculation:</h3>
The given inequality is y < x² + 1
Finding points to graph the boundary line by taking y = x² + 1:
When x = -2,
y = (-2)² + 1 = 4 + 1 = 5
⇒ (-2, 5)
When x = -1,
y = (-1)² + 1 = 2
⇒ (-1, 2)
When x = 0,
y = (0)² + 1 = 1
⇒ (0, 1)
When x = 1,
y = (1)² + 1 = 2
⇒ (1, 2)
When x = 2,
y = (2)² + 1 = 5
⇒ (2, 5)
Plotting these points in the graph forms an upward-facing parabola.
So, all the points above the vertex of the parabola satisfy the given inequality. Thus, that part is shaded.
From this, the graph at option 1 is the required graph for the inequality y < x² + 1. The boundary line is dashed since the inequality symbol is " < ".
Learn more about graphing inequalities here:
brainly.com/question/371134
#SPJ1
R = m - v + 2, where r = faces, v = vertices, and m = edges
r = 28 - 13 + 2
r = 15 + 2
r = 17, so the first answer is correct.
7. The surface area of a cone is A = pi*r*sqrt(r^2 + H^2)
A = pi*(7)(sqrt(49 + 1849)
A = pi*(7)(43.57)
A = pi*305 = 959 m^2, so the first answer is correct.
13. The volume of the slab is V = HLW
V = (5 yards)(5 yards)(1/12 yards)
V = 25/12 cubic yards
So it costs $46.00*(25/12) = $95.83 of total concrete. The third answer is correct.
21. First, find the volume of the rectangular prism. V = HLW
V = (15 cm)(5 cm)(7 cm)
V = 525 cm^3
Next, find the volume of the pyramid. V = 1/3(BH), where H is the height of the pyramid and B is the area of the base of the pyramid. Note that B = (15 cm)(5 cm) = 75 cm^2
V = (1/3)(75 cm^2)(13 cm)
V = 325 cm^3
Add the two volumes together, the total volume is 850 cm^3. The fourth answer is correct.
22. The volume of a square pyramid is V = 1/3(S^2)(H), where S is the side length and H is the height.
V = (1/3)(20^2 in^2)(21 in)
V = 2800 in^3
Now that we know the volume of this pyramid, and that both pyramids have equal volume, we plugin our V to the equation for the volume.
2800 = (1/3)(84)(S^2)
2800 = 28S^2
100 = S^2
<span>
10 in = S, so we have a side length of 10 in, and the first answer is correct. </span>
Answer:
A, C, E
Step-by-step explanation:
You can put A, C, and E in the blank.