<em>mC: 12g/mol</em>
12g ------- 6,02·10²³ a.
6g --------- X
X = (6×<span>6,02·10²³)/12
</span><u>X = 3,01·10²³ atoms</u>
---->>> A :)
Answer:
Each giant planet has a core of “ice” and “rock” of about 10 Earth masses. Jupiter, Saturn, and Neptune have major internal heat sources, obtaining as much (or more) energy from their interiors as by radiation from the Sun.
Explanation:
A single molecule of hemoglobin can bind to 4 molecules of oxygen gas. However, hemoglobin has a greater affinity for carbon monoxide than oxygen. Therefore, an excess of carbon monoxide in the presence of oxygenated hemoglobin will result in the displacement of each oxygen atom for a carbon monoxide atom.
Hb(O2)4 (aq) + 4 CO(g) --> Hb(CO)4 (aq) + 4 O2(g)
With an excess of carbon monoxide, it is safe to assume that each oxygen molecule will be displaced with a carbon monoxide molecule. Therefore, if we have 4.5 moles of oxygenated hemoglobin (Hb(O2)4), all 4.5 moles of the species will release oxygen and bind to carbon monoxide.
Answer:
Q = 4.056 J
Explanation:
∴ m = 406.0 mg = 0.406 g
∴ <em>C </em>= 1.85 J/g.K
∴ T1 = 33.5°C ≅ 306.5 K
∴ T2 = 38.9°C = 311.9 K
⇒ ΔT = 311.9 - 306.5 = 5.4 K
⇒ Q = (0.406 g)(1.85 J/gK)(5.4 K)
⇒ Q = 4.056 J