Formula to find the arc length is:

Where, s= arc length,
r = radius of the circle
\theta = central angle in degrees.
According to the given problem, \theta= 150 and r =2.4.
So, first step is to plug in these values in the above formula to get the arc length.

=


So, arc length is
.
Answer:
A and D have whole grid squares that are the same size and aren't over lapping
C has overlapping grid squares making it hard to count
B can't be used to find area because some of the grid squares are different sizes
You still could use B because four of the smaller squares seems to be equivalent to one of the larger squares
Step-by-step explanation:
A straight line is 180° so....
9x+24 +6x - 24 = 180
15x=180. ( because you have to combine like terms.
X= 12
Answer:
The answer is
1. 27.659
2. 27.658
3. 27.657
4. 27.558
Step-by-step explanation:
Decreasing order is greatest number to the least.
I really hope this helps
Answer:
1/8
Step-by-step explanation:
To simplify the expression √3/√8, we can first simplify the square root terms by finding the prime factorization of each number under the square root. The prime factorization of 3 is 3, and the prime factorization of 8 is 2 * 2 * 2.
We can then rewrite the square root terms as follows:
√3/√8 = √(3) / √(2 * 2 * 2)
Next, we can use the property of square roots that says that the square root of a number is equal to the square root of each of its prime factors. This means that we can rewrite the square root term as follows:
√(3) / √(2 * 2 * 2) = √(3) / √(2) / √(2) / √(2)
Since the square root of a number is the same as the number itself, we can simplify the expression further by removing the square root symbols from the prime numbers 2:
√(3) / √(2) / √(2) / √(2) = √(3) / 2 / 2 / 2
Finally, we can use the rules of division to simplify the expression even further:
√(3) / 2 / 2 / 2 = √(3) / (2 * 2 * 2)
Since any number divided by itself is equal to 1, we can simplify the expression one last time to get our final answer:
√(3) / (2 * 2 * 2) = 1/2 * 1/2 * 1/2 = 1/8
Therefore, the simplified form of the expression √3/√8 is 1/8.