Base number, like in the equation 4², 4 is the base number
9514 1404 393
Answer:
7.92 years
Step-by-step explanation:
We want to find t such that ...
3 = 2^(t/5)
where 2^(t/5) is the annual multiplier when doubling time is 5 years.
Taking logs, we have ...
log(3) = (t/5)log(2)
t = 5·log(3)/log(2) ≈ 7.92 . . . years
It will take about 7.92 years for the population to triple.
Answer:
Newton's third law of motion states that every action has an equal and opposite reaction. In softball when the catcher catches the ball the two forces present are the mitt on the ball and the ball on the mitt. The two are equal and in opposite directions.
1) Our marbles will be blue, red, and green. You need two fractions that can be multiplied together to make 1/6. There are two sets of numbers that can be multiplied to make 6: 1 and 6, and 2 and 3. If you give the marbles a 1/1 chance of being picked, then there's no way that a 1/6 chance can be present So we need to use a 1/3 and a 1/2 chance. 2 isn't a factor of 6, but 3 is. So we need the 1/3 chance to become apparent first. Therefore, 3 of the marbles will need to be one colour, to make a 1/3 chance of picking them out of the 9. So let's say 3 of the marbles are green. So now you have 8 marbles left, and you need a 1/2 chance of picking another colour. 8/2 = 4, so 4 of the marbles must be another colour, to make a 1/2 chance of picking them. So let's say 4 of the marbles are blue. We know 3 are green and 4 are blue, 3 + 4 is 7, so the last 2 must be red.
The problem could look like this:
A bag contains 4 blue marbles, 2 red marbles, and 3 green marbles. What are the chances she will pick 1 blue and 1 green marble?
You should note that picking the blue first, then the green, will make no difference to the overall probability, it's still 1/6. Don't worry, I checked
2) a - 2% as a probability is 2/100, or 1/50. The chance of two pudding cups, as the two aren't related, both being defective in the same packet are therefore 1/50 * 1/50, or 1/2500.
b - 1,000,000/2500 = 400
400 packages are defective each year