Answer:
- The shaded region is 9.83 cm²
Step-by-step explanation:
<em>Refer to attached diagram with added details.</em>
<h2>Given </h2>
Circle O with:
- OA = OB = OD - radius
- OC = OD = 2 cm
<h2>To find</h2>
<h2>Solution</h2>
Since r = OC + CD, the radius is 4 cm.
Consider right triangles OAC or OBC:
- They have one leg of 2 cm and hypotenuse of 4 cm, so the hypotenuse is twice the short leg.
Recall the property of 30°x60°x90° triangle:
- a : b : c = 1 : √3 : 2, where a- short leg, b- long leg, c- hypotenuse.
It means OC: OA = 1 : 2, so angles AOC and BOC are both 60° as adjacent to short legs.
In order to find the shaded area we need to find the area of sector OADB and subtract the area of triangle OAB.
Area of <u>sector:</u>
- A = π(θ/360)r², where θ- central angle,
- A = π*((mAOC + mBOC)/360)*r²,
- A = π*((60 + 60)/360))(4²) = 16.76 cm².
Area of<u> triangle AO</u>B:
- A = (1/2)*OC*(AC + BC), AC = BC = OC√3 according to the property of 30x60x90 triangle.
- A = (1/2)(2*2√3)*2 = 4√3 = 6.93 cm²
The shaded area is:
- A = 16.76 - 6.93 = 9.83 cm²
A is correct
C is correct
E is correct
Answer:
The ans is -14 if you use desmos and start "finger counting" the slope of -3, y will equal -14 once it reaches (3,y)
The answer is 2 = p
Explanation: Here the goal is to get the variable "p" by itself, so first your have to distribute 2 to (p-12) which gives you -10p = 2p-24. Then you add 10p on both sides so that the variable is on one side. Then you add 24 to both sides. After that you divide 12 from both sides, giving you 2 = P
-10P = 2(p-12)
-10p = 2p-24
+10p +10p
0 = 12p-24
+24 +24
24 = 12p
24÷12 = 12p÷12
2 = p
The number u looking for is 28