Answer:
x = -0.907, 2.57
Step-by-step explanation:
Quadratic Formula: 
Since we are given <em>a</em> = 3, <em>b</em> = -5, and <em>c</em> = -7 from our quadratic, we simply use the Quadratic Formula:
Step 1: Plug in variables

Step 2: Solve


Step 3: Evaluate for decimals
You should get x = -0.906718 and 2.57338 as your answers.
He can run 10.5 miles in 75 minutes
Answer:
210 in^3
Step-by-step explanation:
7x5x6 = 210 cubic inches
Answer:
cos(θ)
Step-by-step explanation:
Para una función f(x), la derivada es el límite de
h
f(x+h)−f(x)
, ya que h va a 0, si ese límite existe.
dθ
d
(sin(θ))=(
h→0
lim
h
sin(θ+h)−sin(θ)
)
Usa la fórmula de suma para el seno.
h→0
lim
h
sin(h+θ)−sin(θ)
Simplifica sin(θ).
h→0
lim
h
sin(θ)(cos(h)−1)+cos(θ)sin(h)
Reescribe el límite.
(
h→0
lim
sin(θ))(
h→0
lim
h
cos(h)−1
)+(
h→0
lim
cos(θ))(
h→0
lim
h
sin(h)
)
Usa el hecho de que θ es una constante al calcular límites, ya que h va a 0.
sin(θ)(
h→0
lim
h
cos(h)−1
)+cos(θ)(
h→0
lim
h
sin(h)
)
El límite lim
θ→0
θ
sin(θ)
es 1.
sin(θ)(
h→0
lim
h
cos(h)−1
)+cos(θ)
Para calcular el límite lim
h→0
h
cos(h)−1
, primero multiplique el numerador y denominador por cos(h)+1.
(
h→0
lim
h
cos(h)−1
)=(
h→0
lim
h(cos(h)+1)
(cos(h)−1)(cos(h)+1)
)
Multiplica cos(h)+1 por cos(h)−1.
h→0
lim
h(cos(h)+1)
(cos(h))
2
−1
Usa la identidad pitagórica.
h→0
lim
−
h(cos(h)+1)
(sin(h))
2
Reescribe el límite.
(
h→0
lim
−
h
sin(h)
)(
h→0
lim
cos(h)+1
sin(h)
)
El límite lim
θ→0
θ
sin(θ)
es 1.
−(
h→0
lim
cos(h)+1
sin(h)
)
Usa el hecho de que
cos(h)+1
sin(h)
es un valor continuo en 0.
(
h→0
lim
cos(h)+1
sin(h)
)=0
Sustituye el valor 0 en la expresión sin(θ)(lim
h→0
h
cos(h)−1
)+cos(θ).
cos(θ)
Answer:
Therefore the ball travel 102.92 feet horizontally before hitting the ground
Step-by-step explanation:
Given that, the path of a baseball, hit 3 feet above ground, is modeled by the function

where f(x) represents the vertical height of the ball in feet(Assume) and x is the horizontal distance in feet(Assume) .
When the ball hits the ground, then the vertically distance of the ball will be zero, i.e f(x)=0

[Applying quadratic formula
, here a = -0.001, b=1 and c=3]


Therefore the ball travel 102.92 feet horizontally before hitting the ground.