Recursive
formula is one way of solving an arithmetic sequence. It contains the initial
term of a sequence and the implementing rule that serve as a pattern in finding
the next terms. In the
problem given, the 6th term is provided, therefore we can solve for the initial
term in reverse. To make use of it, instead of multiplying 1.025, we should divide it after
deducting 50 (which supposedly is added).
<span>
Therefore, we perform the given formula: A (n) = <span>1.025(an-1) +
50
</span></span>a(5) =1.025 (235.62) + 50 = 291.51
a(4) = 1.025 (181.09) + 50 = 235.62
a(3) = 1.025 (127.89) + 50 = 181.09
a(2) = 1.025 (75.99) + 50 = 127.89
a(1) = 1.025 (25.36) + 50 = 75.99
a(n) = 25.36
The terms before a(6) are indicated above, since a(6) is already given.
So, the correct answer is <span>
A. $25.36, $75.99.</span>
the second one.
Step-by-step explanation:
sjisidjdododpdpddod
Answer:40
Step-by-step explanation:
dividing 1200 by 600 is 2
so you would do the same for 80
D.
f(x) can be written as (x+2)(x-2)(x-1)
by using difference of two squares to expand x^2 - 4 whch yields 3 x intercepts
similarly, k(x) can be written as
x(x+5)(x-5) which also yields 3
x intercepts (0,-5, and 5)