So, personally, I think it's not that safe to live right by a nuclear plant because it contains radioactive energy and that is unhealthy to the human body. Living by one a person should also take the precautions that it could have a malfunction and that could cause a fatal accident, an explosion. With that radioactive energy is released and both ruins the area and destroys everything. Well my answer is not that great but I hope this helps.
Answer:
Atomic models are important because, they help us visualize the interior of atoms and molecules, and thereby predicting properties of matter.
Explanation:
We study the various atomic models in our course of study because, it is important for us to know, how did people come to the present concept of an atom. How did physics evolve from classical to quantum physics.
All these are important for us to know and thus, knowledge about various atomic models, their discoveries and drawbacks and finally improvements based on scientific evidence present at that time is important for us to understand the underlying theory very well.
Answer:
Explanation:
When an electron jumps from one energy level to a lower energy level some energy is released in the form of a photon.
The difference in energy between the two levels is the energy of the photon and that energy is related to the frequency of the photon by the Einstein - Planck equation:
Where,
- E = energy of the photon,
- h = 6.626×10⁻³⁴ J.s, Planck constant, and
- ν = frequency of the photon.
So, to find the frequency you must first find the energy.
The transition energy can be calculated using the formula:
Where E₀ = 13.6 eV ( 1 eV = 1.602×10⁻¹⁹ Joules) and n = 1,2,3,...
So, the transition energy between n = 4 and n = 3 will be:
- ΔE = - E₀ [ 1/4² - 1/3²] = - 13.6 eV [1/16 - 1/9] = 0.6611. . .eV
- ΔE = 1.602×10⁻¹⁹ Joules/eV × 0.6611... eV = 1.0591 ×10⁻¹⁹ Joules
Now you can use the Einstein - Planck equation:
- ν = 1.0591 ×10⁻¹⁹ J / 6.626×10⁻³⁴ J.s = 1.60×10¹⁴ s⁻¹ (rounded to 3 significant figures).