1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Luba_88 [7]
3 years ago
12

Gordon answered 80% of the questions on the exam correctly. He answered 24 questions correctly. Enter the total number of questi

ons on the exam.
Mathematics
1 answer:
murzikaleks [220]3 years ago
3 0
24/.8=30................
You might be interested in
Write each pair of quantities as a unit rate.
Ronch [10]
A) 75heartbeats per min
B) $9.35 per ticket
C) 2.25 per golf ball
D) $9.75 per hour
3 0
2 years ago
WORTH 34 POINTS! PLEASE HELP ASAP!
kow [346]

Answer:No assoication

Step-by-step explanation:

because they are not parellell with each other

5 0
3 years ago
Read 2 more answers
Find the slope of the line
matrenka [14]

Answer:

1

Step-by-step explanation:

To find the slope of the line, use the equation:

slope = \frac{y_2-y_1}{x_2-x_1}

Let's find 2 obvious points on the line

(5,5) and (10,10)

Since (10,10) comes after (5,5), this will be our (x_2,y_2)

(5,5) will be our (x_1,y_1)

Let's Solve!

\frac{10-5}{10-5} =\frac{5}{5} =1

1

Therefore, our slope is 1

8 0
2 years ago
Solve the equation in the interval [0,2π]. If there is more than one solution write them separated by commas.
Sedaia [141]
\large\begin{array}{l} \textsf{Solve the equation for x:}\\\\ 
\mathsf{(tan\,x)^2+2\,tan\,x-4.76=0}\\\\\\ \textsf{Substitute}\\\\ 
\mathsf{tan\,x=t\qquad(t\in \mathbb{R})}\\\\\\ \textsf{so the equation 
becomes}\\\\ \mathsf{t^2+2t-4.76=0}\quad\Rightarrow\quad\begin{cases} 
\mathsf{a=1}\\\mathsf{b=2}\\\mathsf{c=-4.76} \end{cases} 
\end{array}


\large\begin{array}{l} \textsf{Using 
the quadratic formula:}\\\\ \mathsf{\Delta=b^2-4ac}\\\\ 
\mathsf{\Delta=2^2-4\cdot 1\cdot (-4.76)}\\\\ 
\mathsf{\Delta=4+19.04}\\\\ \mathsf{\Delta=23.04}\\\\ 
\mathsf{\Delta=\dfrac{2\,304}{100}}\\\\ 
\mathsf{\Delta=\dfrac{\diagup\!\!\!\! 4\cdot 576}{\diagup\!\!\!\! 4\cdot
 25}}\\\\ \mathsf{\Delta=\dfrac{24^2}{5^2}} \end{array}

\large\begin{array}{l}
 \mathsf{\Delta=\left(\dfrac{24}{5}\right)^{\!2}}\\\\ 
\mathsf{\Delta=(4.8)^2}\\\\\\ 
\mathsf{t=\dfrac{-b\pm\sqrt{\Delta}}{2a}}\\\\ 
\mathsf{t=\dfrac{-2\pm\sqrt{(4.8)^2}}{2\cdot 1}}\\\\ 
\mathsf{t=\dfrac{-2\pm 4.8}{2}}\\\\ \mathsf{t=\dfrac{\diagup\!\!\!\! 
2\cdot (-1\pm 2.4)}{\diagup\!\!\!\! 2}}\\\\\mathsf{t=-1\pm 2.4} 
\end{array}

\large\begin{array}{l} \begin{array}{rcl} 
\mathsf{t=-1-2.4}&~\textsf{ or }~&\mathsf{t=-1+2.4}\\\\ 
\mathsf{t=-3.4}&~\textsf{ or }~&\mathsf{t=1.4} \end{array} 
\end{array}


\large\begin{array}{l} \textsf{Both 
are valid values for t. Substitute back for }\mathsf{t=tan\,x:}\\\\ 
\begin{array}{rcl} \mathsf{tan\,x=-3.4}&~\textsf{ or 
}~&\mathsf{tan\,x=1.4} \end{array}\\\\\\ \textsf{Take the inverse 
tangent function:}\\\\ \begin{array}{rcl} 
\mathsf{x=tan^{-1}(-3.4)+k\cdot \pi}&~\textsf{ or 
}~&\mathsf{x=tan^{-1}(1.4)+k\cdot \pi}\\\\ 
\mathsf{x=-tan^{-1}(3.4)+k\cdot \pi}&~\textsf{ or 
}~&\mathsf{x=tan^{-1}(1.4)+k\cdot \pi} \end{array}\\\\\\ 
\textsf{where k in an integer.} \end{array}

__________


\large\begin{array}{l}
 \textsf{Now, restrict x values to the interval 
}\mathsf{[0,\,2\pi]:}\\\\ \bullet~~\textsf{For }\mathsf{k=0:}\\\\ 
\begin{array}{rcl} 
\mathsf{x=-tan^{-1}(3.4)


\large\begin{array}{l}
 \bullet~~\textsf{For }\mathsf{k=1:}\\\\ \begin{array}{rcl} 
\mathsf{x=-tan^{-1}(3.4)+\pi}&~\textsf{ or 
}~&\mathsf{x=tan^{-1}(1.4)+\pi} \end{array}\\\\\\ 
\boxed{\begin{array}{c}\mathsf{x=-tan^{-1}(3.4)+\pi} 
\end{array}}\textsf{ is in the 2}^{\mathsf{nd}}\textsf{ quadrant.}\\\\ 
\mathsf{x\approx 1.86~rad~~(106.39^\circ)}\\\\\\ 
\boxed{\begin{array}{c}\mathsf{x=tan^{-1}(1.4)+\pi} \end{array}}\textsf{
 is in the 3}^{\mathsf{rd}}\textsf{ quadrant.}\\\\ \mathsf{x\approx 
4.09~rad~~(234.46^\circ)}\\\\\\ \end{array}


\large\begin{array}{l}
 \bullet~~\textsf{For }\mathsf{k=2:}\\\\ \begin{array}{rcl} 
\mathsf{x=-tan^{-1}(3.4)+2\pi}&~\textsf{ or 
}~&\mathsf{x=tan^{-1}(1.4)+2\pi>2\pi~~\textsf{(discard)}} 
\end{array}\\\\\\ \boxed{\begin{array}{c}\mathsf{x=-tan^{-1}(3.4)+2\pi} 
\end{array}}\textsf{ is in the 4}^{\mathsf{th}}\textsf{ quadrant.}\\\\ 
\mathsf{x\approx 5.00~rad~~(286.39^\circ)} \end{array}


\large\begin{array}{l}
 \textsf{Solution set:}\\\\ 
\mathsf{S=\left\{tan^{-1}(1.4);\,-tan^{-1}(3.4)+\pi;\,tan^{-1}(1.4)+\pi;\,-tan^{-1}(3.4)+2\pi\right\}}
 \end{array}


<span>If you're having problems understanding this answer, try seeing it through your browser: brainly.com/question/2071152</span>


\large\textsf{I hope it helps.}


Tags: <em>trigonometric trig quadratic equation tangent tan solve inverse symmetry parity odd function</em>

6 0
3 years ago
Find the reference number of 11pi/9
kotykmax [81]
Unsure of what you mean by "reference number."  

I do recognize that 11pi/9 is in quadrant III.  I suspect that the so-called "reference number" is the acute angle between the end ray of 11pi/9 and pi, or, in more easily comparable numbers, between 9pi/9 and 11pi/9.

That difference is 2pi/9.
4 0
3 years ago
Other questions:
  • How to work out 4.72 to times 17?
    14·1 answer
  • 2x-5&lt;3x+6<br> ahah help!!!!!!
    6·1 answer
  • What is 15+12x-5x+4y-7 by combining like terms
    11·2 answers
  • Write eight ten thousands, five hundreds, two tens, seven ones
    9·1 answer
  • 180*25/17=what<br> show your work<br> will give brainliest
    8·2 answers
  • Using Heron’s formula, calculate the area of the parallelogram to the nearest tenth of a square unit.
    14·2 answers
  • 3. What three numbers are the Pythagorean triple generated by using 4 for x and 1 for y. Remember to use the formulas:
    11·1 answer
  • Given the speeds of each runner below, determine who runs the fastest.
    5·1 answer
  • Quadratic functions heeeeeellllppp
    6·1 answer
  • Find the measure of angle b.<br><br> And show work
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!