1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Mkey [24]
3 years ago
6

M find b a) not triangle b)11in c)14in d)13in

Mathematics
1 answer:
Alexxx [7]3 years ago
4 0

Answer:

kantut

Step-by-step explanation:

kantut kalimot hahaha you have a great day to be out of town for a few days now and then I can go to be a great day for a few days now and then I can go to be a great day for you want to be a great day to lapu lapu to get a

You might be interested in
MONEY the wayside hotel charges its guest $1 plus $0.80 per minute for long distance calls. Across the street, blue sky hotel ch
atroni [7]
One dollar and eighty cents for wayside hotel
Two dollars and seventy five cents for blue sky hotel
4 0
3 years ago
Graph and label the image of the figure below after a dilation by a factor of 1/2.
neonofarm [45]
Answer:

M' (1.5, -1), F' (2, -1), L' (0.5 -2.5), W' (2.5, -2.5)

see graph below

Explanation:

Given:

The image of a quadrilateral on a coordinate plane

To find:

The coordinates of the new image after dilation of 1/2 have been applied to the original image.

Then graph the coordinates

First, we need to state the coordinates of the original image:

M = (3, -2)

F = (4, -2)

L = (1, -5)

W = (5, -5)

Next, we will apply a scale factor of 1/2:

\begin{gathered} Dilation\text{ rule:} \\ (x,\text{ y\rparen}\rightarrow(kx,\text{ ky\rparen} \\ where\text{ k = scale factor} \\  \\ scale\text{ factor = 1/2} \\ M^{\prime}\text{ = \lparen}\frac{1}{2}(3),\text{ }\frac{1}{2}(-2)) \\ M^{\prime}\text{ = \lparen}\frac{3}{2},\text{ -1\rparen} \\  \\ F\text{ = \lparen}\frac{1}{2}(4),\text{ }\frac{1}{2}(-2)) \\ F^{\prime}\text{ = \lparen2, -1\rparen} \end{gathered}\begin{gathered} L\text{ = \lparen}\frac{1}{2}(1),\text{ }\frac{1}{2}(-5)) \\ L^{\prime}\text{ = \lparen}\frac{1}{2},\text{ }\frac{-5}{2}) \\  \\ W\text{ = \lparen}\frac{1}{2}(5),\text{ }\frac{1}{2}(-5)) \\ W^{\prime}\text{ = \lparen}\frac{5}{2},\text{ }\frac{-5}{2}) \end{gathered}

The new coordinates:

M' (3/2, -1), F' (2, -1), L' (1/2, -5/2), W' (5/2, -5/2)

M' (1.5, -1), F' (2, -1), L' (0.5 -2.5), W' (2.5, -2.5)

Plotting the coordinates:

3 0
1 year ago
A+b=180<br> A=-2x+115<br> B=-6x+169<br> What is the value of B?
natulia [17]
The answer is:  " 91 " .   
___________________________________________________
                    →    " B = 91 " .
__________________________________________________ 

Explanation:
__________________________________________________
Given:  
__________________________________________________
    "  A +  B = 180 " ;

  "A =  -2x + 115 " ;   ↔  A =  115 − 2x ;  

  "B = - 6x + 169 " ;  ↔  B = 169 − 6x ;  
_____________________________________________________
METHOD 1)
_____________________________________________________
Solve for "x" ; and then plug the solved value for "x" into the expression given for "B" ; to  solve for "B"
_____________________________________________________

(115 − 2x) + (169 − 6x) = 

  115 − 2x + 169 − 6x = ?

→ Combine the "like terms" ;  as follows:

      + 115 + 169 = + 284 ; 

 − 2x − 6x = − 8x ; 
_________________________________________________________
And rewrite as:

 " − 8x + 284 " ; 
_________________________________________________________
   →  " - 8x + 284 = 180 " ; 

Subtract:  "284" from each side of the equation:

  →  "  - 8x + 284 − 284 = 180 − 284 " ; 

to get:

 →  " -8x = -104 ; 

Divide EACH SIDE of the equation by "-8 " ; 
    to isolate "x" on one side of the equation; & to solve for "x" ; 

→ -8x / -8 = -104/-8 ; 

→  x = 13
__________________________________________________________
Now, to find the value of "B" :
__________________________________________________________
  "B = - 6x + 169 " ;  ↔  B = 169 − 6x ;  

↔  B = 169 − 6x ;  

         = 169 − 6(13) ;   ===========> Plug in our "solved value, "13",  for "x" ;

         = 169 − (78) ; 

         = 91 ;

   B   = " 91 " .
__________________________________________________
The answer is:  " 91 " . 
____________________________________________________
     →     " B = 91 " . 
____________________________________________________
Now;  let us check our answer:
____________________________________________________
               →   A + B = 180 ;  
____________________________________________________
Plug in our "solved answer" ; which is "91", for "B" ;  as follows:
________________________________________________________

→  A + 91 = ? 180? ;  

↔  A = ? 180 − 91 ? ; 

→  A = ?  -89 ?  Yes!
________________________________________________________
→  " A =  -2x + 115 " ;   ↔  A =  115 − 2x ;  

Plug in our solved value for "x"; which is: "13" ; 

" A = 115 − 2x " ; 

→  A = ? 115 − 2(13) ? ;

→  A = ? 115 − (26) ? ; 

→  A = ? 29 ? Yes!
_________________________________________________ 
METHOD 2)
_________________________________________________
Given:  
__________________________________________________
    "  A +  B = 180 " ;

  "A =  -2x + 115 " ;   ↔  A =  115 − 2x ;  

  "B = - 6x + 169 " ;  ↔  B = 169 − 6x ; 

→  Solve for the value of "B" :
_______________________________________________________
 A + B = 180 ;  

→ B = 180 − A ; 

→ B = 180 − (115 − 2x) ; 

→ B = 180 − 1(115 − 2x) ;  ==========> {Note the "implied value of "1" } ; 
__________________________________________________________
Note the "distributive property" of multiplication:__________________________________________________  a(b + c)  = ab +  ac ;  <u><em>AND</em></u>:
  a(b − c)  = ab − ac .________________________________________________________
Let us examine the following part of the problem:
________________________________________________________
              →      " − 1(115 − 2x)  " ; 
________________________________________________________

→  "  − 1(115 − 2x) " = (-1 * 115) − (-1 * 2x) ;

                                =  -115 − (-2x) ;
                         
                                =  -115  +  2x ;        
________________________________________________________
So we can bring down the:  " {"B = 180 " ...}"  portion ; 

→and rewrite:
_____________________________________________________

→  B = 180 − 115 + 2x ; 

→  B = 65 + 2x ; 
_____________________________________________________
Now;  given:   "B = - 6x + 169 " ;  ↔  B = 169 − 6x ; 

→ " B =  169 − 6x  =  65 + 2x " ; 
______________________________________________________
→  " 169 − 6x  =  65 + 2x "

Subtract "65" from each side of the equation;  & Subtract "2x" from each side of the equation:

→  169 − 6x − 65 − 2x  =  65 + 2x − 65 − 2x ; 

to get:

→   " - 8x + 104 = 0 " ;
 
Subtract "104" from each side of the equation:

→   " - 8x + 104 − 104 = 0 − 104 " ;

to get: 

→   " - 8x = - 104 ;

Divide each side of the equation by "-8" ; 
   to isolate "x" on one side of the equation; & to solve for "x" ; 

→  -8x / -8  = -104 / -8 ; 

to get:

→  x =  13 ; 
______________________________________________________

Now, let us solve for:  " B " ;  → {for which this very question/problem asks!} ; 

→  B = 65 + 2x ;  

Plug in our solved value, " 13 ",  for "x" ; 

→ B = 65 + 2(13) ; 

        = 65 + (26) ;  

→ B =  " 91 " .
_______________________________________________________
Also, check our answer:
_______________________________________________________
Given:  "B = - 6x + 169 " ;   ↔  B = 169 − 6x = 91 ; 

When "x  = 13 " ; does: " B = 91 " ? 

→ Plug in our "solved value" of " 13 " for "x" ;

      → to see if:  "B = 91" ; (when "x = 13") ;

→  B = 169 − 6x ; 

         = 169 − 6(13) ; 

         = 169 − (78)______________________________________________________
→ B = " 91 " . 
______________________________________________________
6 0
3 years ago
A subway train is traveling at a rate of 22.4 m/s. Brakes are applied and it slows down at a constant rate of 3.5 m/s2 until it
WARRIOR [948]

You use the equation Final Velocity²= (Initial Velocity)² 2(Acceleration)(Distance). You plug in what you have 0²=22.4² X 2(-3.5)(D) and solve for D which is 71.68m or about 72m.

6 0
3 years ago
On Tuesday, a coffee sho sold the following: 20 coffees for $2.85 each and 17 lattes f r $4.80 each, If the coffee shop had to p
almond37 [142]

Ok so to solve this problem we're going to need to find out how much money they made (their revenue) and the subtract the cost of paying the employees.

So, let's start by finding their revenue

Step 1: Multiply the cost of each beverage by the number sold

Coffees: 20 x 2.85 = 57

Lattes: 17 x 4.80 = 81.6

Step 2: add up the money made from the coffees and the money made from the lattes to get the total revenue

57 + 81.6 = 138.6

So the shop made $138.60 on Tuesday. Let's set that aside while we find out how much the shop's costs were.

Step 3: Find the price of paying two employees for 6 hours

2 x 6 x 14.5 = 174

So the shop had to pay the employees $174.00 for working there.

Step 4: Find the overall profit/loss by subtracting the cost from the revenue

138.6 - 174 = -35.4

So the shop had a loss of $35.40 on Tuesday.


Hope that helps! Feel free to leave a comment or send me a message if I can clarify anything :)


7 0
3 years ago
Read 2 more answers
Other questions:
  • Factor the algebraic expression <br><br> 12a + 21
    6·2 answers
  • Use the expression 5(6 + 4x) to answer the following:
    5·1 answer
  • Measure the sides and angles of the two triangles. Are the two triangles similar? Yes, corresponding angles are congruent. Yes,
    15·2 answers
  • Using the table, what is the relative frequency of the blue beads?
    10·1 answer
  • Half the quotient of 42 and a number is 3 1/2
    12·1 answer
  • What is the solution of StartRoot x + 2 EndRoot minus 15 = negative 3?
    14·2 answers
  • Simplify 25(14–27)+25÷16. a 28/5 b16/5 c 31/5 d 36/5
    8·1 answer
  • Charlotte bought 25 cookies to share with her class, and 5 of them are oatmeal raisin. What percent of the cookies are oatmeal r
    15·2 answers
  • 7 friends share 840g of chocolate equally between them.
    8·2 answers
  • what is the equation in slope- intercept form of the line that passes through the points (-26 -11) and (39, 34) ?A) y = -9/13 x
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!