Answer:
because they allow us to make direct comparisons
Step-by-step explanation:
Answer:
Option D. 2x⁷ - 12x⁶ + 10x⁵
Step-by-step explanation:
From the question given:
Length (L) = 2x²
Width (w) = x³
Height (h) = x² - 6x + 5
Volume (V) =?
Volume (V) = length (L) x width (w) x height (h)
V = L x w x h
V = 2x² × x³ × x² - 6x + 5
V = (2x²) (x³) (x² - 6x + 5)
V = (2x⁵) (x² - 6x + 5)
Clear bracket
V = 2x⁷ - 12x⁶ + 10x⁵
Therefore, the volume of the cube is 2x⁷ - 12x⁶ + 10x⁵
Since
, we can rewrite the integral as

Now there is no ambiguity about the definition of f(t), because in each integral we are integrating a single part of its piecewise definition:

Both integrals are quite immediate: you only need to use the power rule

to get
![\displaystyle \int_0^11-3t^2\;dt = \left[t-t^3\right]_0^1,\quad \int_1^4 2t\; dt = \left[t^2\right]_1^4](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cint_0%5E11-3t%5E2%5C%3Bdt%20%3D%20%5Cleft%5Bt-t%5E3%5Cright%5D_0%5E1%2C%5Cquad%20%5Cint_1%5E4%202t%5C%3B%20dt%20%3D%20%5Cleft%5Bt%5E2%5Cright%5D_1%5E4)
Now we only need to evaluate the antiderivatives:
![\left[t-t^3\right]_0^1 = 1-1^3=0,\quad \left[t^2\right]_1^4 = 4^2-1^2=15](https://tex.z-dn.net/?f=%5Cleft%5Bt-t%5E3%5Cright%5D_0%5E1%20%3D%201-1%5E3%3D0%2C%5Cquad%20%5Cleft%5Bt%5E2%5Cright%5D_1%5E4%20%3D%204%5E2-1%5E2%3D15)
So, the final answer is 15.
Answer:
.
Step-by-step explanation:
How many unique combinations are possible in total?
This question takes 5 objects randomly out of a bag of 50 objects. The order in which these objects come out doesn't matter. Therefore, the number of unique choices possible will the sames as the combination
.
How many out of that 2,118,760 combinations will satisfy the request?
Number of ways to choose 2 red candies out a batch of 28:
.
Number of ways to choose 3 green candies out of a batch of 8:
.
However, choosing two red candies out of a batch of 28 red candies does not influence the number of ways of choosing three green candies out of a batch of 8 green candies. The number of ways of choosing 2 red candies and 3 green candies will be the product of the two numbers of ways of choosing
.
The probability that the 5 candies chosen out of the 50 contain 2 red and 3 green will be:
.
1444 that is it ok my friend