Answer:
-4.99
1.9435
3.25E4
1.56e-9
Step-by-step explanation:
Answer:
A 2√2(cos 7π/4 + i sin 7π/4)
Step-by-step explanation:
A. 2√2(cos 7π/4 + i sin 7π/4)
2 sqrt(2) ( sqrt(2)/2 - sqrt(2)/2 i)
Distribute
2-2i
This is in the fourth quadrant
B. 2√2(cos 150° + i sin 150°)
2 sqrt(2) (-sqrt(3)/2 +1/2i)
-sqrt(6) +sqrt(2) i
This is in the third quadrant (NO)
C. 2(cos 7π/4 + i sin 7π/4)
2( ( sqrt(2)/2 - sqrt(2)/2 i))
sqrt(2) - sqrt(2) i
This is the fourth quadrant
D. 2(cos 90° + i sin 90°)
2(0+i)
2i
This is on the positive y axis NO
Now we need to decide between the two in the fourth quadrant.
The point has an x coordinate of 2 and a y coordinate of -2
This aligns with point A
The answer is the first option
y=3/2x+5
Answer:
Hopes it helps
Step-by-step explanation:
The Quadratic Polynomial is
2 x² +x -4=0
Using the Determinant method to find the roots of this equation
For, the Quadratic equation , ax²+ b x+c=0
(b) x²+x=0
x × (x+1)=0
x=0 ∧ x+1=0
x=0 ∧ x= -1
You can look the problem in other way
the two Quadratic polynomials are
2 x²+x-4=0, ∧ x²+x=0
x²= -x
So, 2 x²+x-4=0,
→ -2 x+x-4=0
→ -x -4=0
→x= -4
∨
x² +x² +x-4=0
x²+0-4=0→→x²+x=0
→x²=4
x=√4
x=2 ∧ x=-2
As, you will put these values into the equation, you will find that these values does not satisfy both the equations.
So, there is no solution.
You can solve these two equation graphically also.
Answer:
4
Step-by-step explanation: