If you download Photomath and scan your question it will give u the answer;)
The first one is 4
Second is 5/9
Third is 1/2
Fourth is 11
Answer:
The 95% confidence interval estimate of the population mean rating for Miami is (6.0, 7.5).
Step-by-step explanation:
The (1 - <em>α</em>)% confidence interval for the population mean, when the population standard deviation is not provided is:

The sample selected is of size, <em>n</em> = 50.
The critical value of <em>t</em> for 95% confidence level and (<em>n</em> - 1) = 49 degrees of freedom is:

*Use a <em>t</em>-table.
Compute the sample mean and sample standard deviation as follows:
![\bar x=\frac{1}{n}\sum X=\frac{1}{50}\times [1+5+6+...+10]=6.76\\\\s=\sqrt{\frac{1}{n-1}\sum (x-\bar x)^{2}}=\sqrt{\frac{1}{49}\times 31.12}=2.552](https://tex.z-dn.net/?f=%5Cbar%20x%3D%5Cfrac%7B1%7D%7Bn%7D%5Csum%20X%3D%5Cfrac%7B1%7D%7B50%7D%5Ctimes%20%5B1%2B5%2B6%2B...%2B10%5D%3D6.76%5C%5C%5C%5Cs%3D%5Csqrt%7B%5Cfrac%7B1%7D%7Bn-1%7D%5Csum%20%28x-%5Cbar%20x%29%5E%7B2%7D%7D%3D%5Csqrt%7B%5Cfrac%7B1%7D%7B49%7D%5Ctimes%2031.12%7D%3D2.552)
Compute the 95% confidence interval estimate of the population mean rating for Miami as follows:


Thus, the 95% confidence interval estimate of the population mean rating for Miami is (6.0, 7.5).
Convert both perecentages to decimal form by dividing each of them by 100 to get 0.60 and 0.65. Next, multiply by 0.60 and 0.65 to get 0.39. Multiply the product by 100 to get the percentage form, 39%. So, the answer is 39%.