The important thing to note is the reason why electron react is due to the instability of the electrons. All elements wants to aim the electron configuration of the noble gases. This is the most stable form in which each of the orbitals are sufficiently filled. When it comes to bonding, the order of reactivity is: alkynes > alkenes > alkanes. Alkynes are compounds with triple bonds, alkenes with double bonds and alkanes with single bonds. The single bonds are called saturated hydrocarbons. This is because they have reached stability, so it is quite difficult to react this with reducing or oxidizing agents. Alkynes and alkenes are unsaturated hydrocarbons. They readily react with reducing and oxidizing agents so as to become saturated, as well. The underlying principle for this is that single bonds contain sigma bonds which is the head-on overlapping of electrons. These is the strongest type of covalent bond. Double and triple bonds contain pi bonds which is the side overlapping of electrons orbitals. Hence, these electrons would be easily separated making it more reactive especially during protonation.
Answer:
<h2>The sequence is; b, e, a, d, c
</h2>
Explanation:
1. In a decomposition reaction; One reactant is broken down into two or more than two products is called decomposition.
2. A combustion reaction; A fuel is combined with oxygen to produce carbon dioxide and water, this reaction is called combustion reaction.
3. A synthesis reaction; it occurs when two or more reactants combine to form one product is known as synthesis reaction.
4. Double Replacement Reaction; Two compounds react to form two different compounds is known as double Replacement Reaction.
5. A single replacement reaction; occurs when a compound reacts with an element to form a new compound , this reaction is called as single replacement reaction.
Answer:
Reverse the
reaction
Explanation:
Reactions:

Overall:

As can be seen, in the overall reaction we have
in the reactants like in the second reaction and
in the products. The
is in the first reaction but as a reactant so we need to reverse that reaction:

Combining:

