Answer: ∞
Step-by-step explanation: First, find the indefinite integral F (x), and then evaluate F (∞)–F(– ∞).
Answer:
15 days
Step-by-step explanation:
Let x be the number of days needed for B to complete the job. Then x-5 is the number of days needed for A to complete the job.
In 1 day,
- A completes
of all work; - B completes
of all work.
Hence, in 1 day both A and B complete
of all work. A and B working together can do a work in 6 days. Then

Solve this equation:

If
then
that is impossible. So, B needs 15 days to complete the work alone.
Part a)
Answer: 5*sqrt(2pi)/pi
-----------------------
Work Shown:
r = sqrt(A/pi)
r = sqrt(50/pi)
r = sqrt(50)/sqrt(pi)
r = (sqrt(50)*sqrt(pi))/(sqrt(pi)*sqrt(pi))
r = sqrt(50pi)/pi
r = sqrt(25*2pi)/pi
r = sqrt(25)*sqrt(2pi)/pi
r = 5*sqrt(2pi)/pi
Note: the denominator is technically not able to be rationalized because of the pi there. There is no value we can multiply pi by so that we end up with a rational value. We could try 1/pi, but that will eventually lead back to having pi in the denominator. I think your teacher may have made a typo when s/he wrote "rationalize all denominators"
============================================================
Part b)
Answer: 3*sqrt(3pi)/pi
-----------------------
Work Shown:
r = sqrt(A/pi)
r = sqrt(27/pi)
r = sqrt(27)/sqrt(pi)
r = (sqrt(27)*sqrt(pi))/(sqrt(pi)*sqrt(pi))
r = sqrt(27pi)/pi
r = sqrt(9*3pi)/pi
r = sqrt(9)*sqrt(3pi)/pi
r = 3*sqrt(3pi)/pi
Note: the same issue comes up as before in part a)
============================================================
Part c)
Answer: sqrt(19pi)/pi
-----------------------
Work Shown:
r = sqrt(A/pi)
r = sqrt(19/pi)
r = sqrt(19)/sqrt(pi)
r = (sqrt(19)*sqrt(pi))/(sqrt(pi)*sqrt(pi))
r = sqrt(19pi)/pi
35%, because the apple pies account for 65% of the pies made