Atmosphere is made of a mixture of gases. Each individual gas exerts a pressure known as the partial pressure.
The sum of the partial pressures exerted by each gas in the mixture is equal to the total pressure exerted by the mixture of gases as a whole.
The partial pressure depends on the composition of the gas in the mixture.
In this case the total pressure - 870 mmHg
21% of atmosphere is oxygen
partial pressure of Oxygen = 870 mmHg x 21% = 182.7 mmHg
Answer:
The intermolecular forces between water molecules are stronger than those between oxygen molecules. In general, the bigger the molecule, the stronger the intermolecular forces, so the higher the melting and boiling points.
Answer:
a. Interference patterns are observed when a wave passes through a barrier with two slits
Explanation:
Interference is a situation where two waves superimpose to form a new wave of a different amplitude. This amplitude can be greater, same or lower.
the diagram attached below shows the movement of a wave through a barrier with two slits.
you can notice the portions of the wave that overlap. This overlapping of waves is the interference.
Thus, option A is correct.
The other options however, are not correct. as shown below:
Option B is wrong as waves exhibit diffraction <em>(it is diffraction of the light wave that produces the rainbows we see in the sky)</em>
Option C is wrong as waves do not travel straight through slits always.
Option D is wrong as waves can also interfere constructively and destructively.
Explanation:
Part A
Boiling point of HF is much higher as compared to the boiling point of HCl.
Reason:
The strongest inter molecular hydrogen bonding exist between HF molecules This is due to highly electronegative Fluorine atom.
Part B
The type of bonding present in the given compounds are:
1. Ice
The water molecules in ice are linked to each other through intermolecular hydrogen bonding due to the presence of electronegative oxygen atom that is attached to hydrogen atom.
2. Copper dioxide
In Copper dioxide, Copper and oxide ions are linked to each other via electrostatic force of attraction due to the presence of electronegative Oxygen atom and electropositive Cu atom.
Therefore, ionic bond is present in it.
3. Steel
In steel, metal and negatively charged electrons are linked to each other, thus giving rise to metallic bond between steel molecules.
4. Silicon elastomer
In silicon elastomer, Silicon atom is linked to other atom via covalent bonds due to sharing of electrons.
5. Tungsten
In the case of tungsten also, atoms are bonded to each other via metallic bond.