Answer:
22.4722
Step-by-step explanation:
To answer this question we need to use the distance formula. The distance formula is as follows:

Now, let's identify what each variable is:
x2 = 13
x1 = -8
y2 = -1
y1 = 7
Next, let's put these into the equation:

Time to solve the equation:

Therefore, the distance between the points of (-8,7) and (13,1) is 22.4722.
<em>I hope this helps!!</em>
<em>- Kay :)</em>
Answer:
Step-by-step explanation:
Given that acceleration of an object is

is the solution to the differential equation
Since v(0) =7
we get ln 7 = C
Hence 
since velocity is rate of change of distance s we have
![v=\frac{ds}{dt} =7e^{-2t}\\s= [tex]s(t) =\frac{-7}{2} (e^{-2t})+C)[](https://tex.z-dn.net/?f=v%3D%5Cfrac%7Bds%7D%7Bdt%7D%20%3D7e%5E%7B-2t%7D%5C%5Cs%3D%20%5Btex%5Ds%28t%29%20%3D%5Cfrac%7B-7%7D%7B2%7D%20%28e%5E%7B-2t%7D%29%2BC%29%5B)
substitute t=0 and s=0

So solution for distance is

Multiply 15 and 24 then divide that answer by 11.2.
Let X be the national sat score. X follows normal distribution with mean μ =1028, standard deviation σ = 92
The 90th percentile score is nothing but the x value for which area below x is 90%.
To find 90th percentile we will find find z score such that probability below z is 0.9
P(Z <z) = 0.9
Using excel function to find z score corresponding to probability 0.9 is
z = NORM.S.INV(0.9) = 1.28
z =1.28
Now convert z score into x value using the formula
x = z *σ + μ
x = 1.28 * 92 + 1028
x = 1145.76
The 90th percentile score value is 1145.76
The probability that randomly selected score exceeds 1200 is
P(X > 1200)
Z score corresponding to x=1200 is
z = 
z = 
z = 1.8695 ~ 1.87
P(Z > 1.87 ) = 1 - P(Z < 1.87)
Using z-score table to find probability z < 1.87
P(Z < 1.87) = 0.9693
P(Z > 1.87) = 1 - 0.9693
P(Z > 1.87) = 0.0307
The probability that a randomly selected score exceeds 1200 is 0.0307