It will be Oxygen . And total 8 protons, 8 electrons and 9 neutrons are present in it.
You can't usually just use a single spectrum line to confirm the identity of an element because there are cases that the emission line id not clearly defined. When the emission line is very weak compared to surrounding noise, in which case the more datapoints you have to build up confidence for the existence of a particular emission spectra, the better.
Answer:
![K_a=\frac{[H^+][A^-]}{[HA]}](https://tex.z-dn.net/?f=K_a%3D%5Cfrac%7B%5BH%5E%2B%5D%5BA%5E-%5D%7D%7B%5BHA%5D%7D)
Explanation:
ka is defined as the dissociation constant of an acid. It is defined as the ratio of concentration of products to the concentration of reactants.
For the dissociation of weak acid, the chemical equation follows:

The equilibrium constant is defined by the equilibrium concentration of products over reactants:
![K_a=\frac{[H^+][A^-]}{[HA]}](https://tex.z-dn.net/?f=K_a%3D%5Cfrac%7B%5BH%5E%2B%5D%5BA%5E-%5D%7D%7B%5BHA%5D%7D)
Use a periodic table. Count the exponent for your atomic number. So, 1s2 2s2 2p5= Fluorine
1s2 2s2 2p6 3s2 3p5= Chlorine
1s2 2s2 2p6 3s2 3p6 4s2 3d6= Iron
The electron geometry of TeCl6 is octahedral, while the molecular geometry is octahedral, non polar.
Octahedral geometry or six electron pairs is the basic geometry for a molecule containing a central atom with six pairs of electrons, such as TeCl6 or SF6. As we replace bonding pairs with non bonding pairs the molecular geometry changes to square pyramidal to square planar.