Answer:
at 181.0
is -723.3 kJ/mol.
Explanation:
We know, 
where, T is temperature in kelvin.
Let's assume
and
does not change in the temperature range 25.0
- 181.0
.
= (273+181.0) K = 454.0 K
Hence, at 181.0
, ![\Delta G^{0}=(-795.8kJ/mol)-[(454.0 K)\times (-159.8\times 10^{-3}kJ/K.mol)]](https://tex.z-dn.net/?f=%5CDelta%20G%5E%7B0%7D%3D%28-795.8kJ%2Fmol%29-%5B%28454.0%20K%29%5Ctimes%20%28-159.8%5Ctimes%2010%5E%7B-3%7DkJ%2FK.mol%29%5D)
= -723.3 kJ/mol
If a gas has an initial pressure of 24,650 pa and an initial volume of 376 ml, then the final volume would be 11,943.8144 ml if the pressure of the gas is changed to 775 torr assuming that the amount and the temperature of the gas remain constant.
It is given that the initial pressure P₁ is 24,650Pa and initial volumeV₁ is 376ml and the final pressureP₂ is 775 torr. We need to find the final volume of the gas. The final volume could be found using the following formula:
P₁V₁ = P₂V₂
By substituting the values, we get
24650 x 376 = 776 x V₂
9268400 = 776V₂
V₂ = 9268400/776
V₂ = 11,943.8144 ml
Therefore, the final volume of the gas would be 11,943.8144 ml
To know more about Partial pressure, click below:
brainly.com/question/14119417
#SPJ4
Answer 15m
Explanation: Distance = Speed x Time
3 x 5 =15
Answer:
pH = 5.54
Explanation:
The pH of a buffer solution is given by the <em>Henderson-Hasselbach (H-H) equation</em>:
- pH = pKa + log
![\frac{[CH_3COO^-]}{[CH_3COOH]}](https://tex.z-dn.net/?f=%5Cfrac%7B%5BCH_3COO%5E-%5D%7D%7B%5BCH_3COOH%5D%7D)
For acetic acid, pKa = 4.75.
We <u>calculate the original number of moles for acetic acid and acetate</u>, using the <em>given concentrations and volume</em>:
- CH₃COO⁻ ⇒ 0.377 M * 0.250 L = 0.0942 mol CH₃COO⁻
- CH₃COOH ⇒ 0.345 M * 0.250 L = 0.0862 mol CH₃COOH
The number of CH₃COO⁻ moles will increase with the added moles of KOH while the number of CH₃COOH moles will decrease by the same amount.
Now we use the H-H equation to <u>calculate the new pH</u>, by using the <em>new concentrations</em>:
- pH = 4.75 + log
= 5.54