Answer:
The mass of 2,50 moles of NaCl is 146, 25 g.
Explanation:
First we calculate the mass of 1 mol of NaCl, starting from the atomic weights of Na and Cl obtained from the periodic table. Then we calculate the mass of 2.50 moles of compound, making a simple rule of three:
Weight NaCl= Weight Na + Weight Cl= 23 g+ 35,5 g= 58, 5 g/ mol
1 mol ------ 58, 5 g
2,5 mol---x= (2,5 mol x 58, 5 g)/ 1 mol = <u>146, 25 g</u>
In every reaction, mass cannot be destroyed nor created as defined by the law of conservation of mass. Energy also cannot be destroyed when a chemical reaction takes place
Answer:
Partial pressure of CO₂ is 406.9 mmHg
Explanation:
To solve the question we should apply the concept of the mole fraction.
Mole fraction = Moles of gas / Total moles
We have the total moles of the mixture, if we have the moles for each gas inside. (3.63 moles of O₂, 1.49 moles of N₂ and 4.49 moles of CO₂)
Total moles = 3.63 mol O₂ + 1.49 mol N₂ + 4.49 mol CO₂ = 9.61 moles
To determiine the partial pressure of CO₂ we apply
Mole fraction of CO₂ → mol of CO₂ / Total moles = P. pressure CO₂ / Total P
Partial pressure of CO₂ = (mol of CO₂ / Total moles) . Total pressure
We replace values: (4.49 moles / 9.61 moles) . 871 mmHg = 406.9 mmHg
2 ICl + H2 ----> I2 + 2 HCl
as given that rate is first order with respect to ICl and second order with respect to H2
The rate law will be
Rate = K [ICl] [ H2]^2
b) Given that K = 2.01 M^-2 s^-1
Concentrations are
[ICl] = 0.273 m and [H2] = 0.217 m
Therefore rate = 2.01 X (0.273)(0.217)^2 = 0.0258 M / s
Answer: The first steps
Explanation: science