Answer:
1/4.
Step-by-step explanation:
That is 1 - (1/4 + 2/5 + 1/10).
The Lowest common multiple 4 5 and 10 is 20 so we have
20/20 - (5/20 + 8/20 + 2/20)
= 20/20 - 15/20
= 5/20
= 1/4 answer.
Answer: The numerator and denominator degrees of freedom (respectively) for the critical value of F are <u>4</u> and<u> 118 .</u>
Step-by-step explanation:
We know that , for critical value of F, degrees of freedom for numerator = k-1
and for denominator = n-k, where n= Total observations and k = number of independent variables.
Here, Numbers of independent variables(k) = 5
Total observations (n)= 123
So, Degrees of freedom for numerator = 5-1=4
Degrees of freedom for denominator =123-5= 118
Hence, the numerator and denominator degrees of freedom (respectively) for the critical value of F are <u>4</u> and<u> 118 .</u>
The sum of four and a number
Answer:
This says middle school.. What grade are you in? I am in 8th grade and do not know any of that...
I have never seen work near that.........
Answer:
yp = -x/8
Step-by-step explanation:
Given the differential equation: y′′−8y′=7x+1,
The solution of the DE will be the sum of the complementary solution (yc) and the particular integral (yp)
First we will calculate the complimentary solution by solving the homogenous part of the DE first i.e by equating the DE to zero and solving to have;
y′′−8y′=0
The auxiliary equation will give us;
m²-8m = 0
m(m-8) = 0
m = 0 and m-8 = 0
m1 = 0 and m2 = 8
Since the value of the roots are real and different, the complementary solution (yc) will give us
yc = Ae^m1x + Be^m2x
yc = Ae^0+Be^8x
yc = A+Be^8x
To get yp we will differentiate yc twice and substitute the answers into the original DE
yp = Ax+B (using the method of undetermined coefficients
y'p = A
y"p = 0
Substituting the differentials into the general DE to get the constants we have;
0-8A = 7x+1
Comparing coefficients
-8A = 1
A = -1/8
B = 0
yp = -1/8x+0
yp = -x/8 (particular integral)
y = yc+yp
y = A+Be^8x-x/8