1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
user100 [1]
3 years ago
11

Find the surface area of the square pyramid shown below.​

Mathematics
1 answer:
Katarina [22]3 years ago
6 0

Answer:

The surface area is 40

Step-by-step explanation:

It is 40 because you have to find the area of each face so you would do 3*4 which equals 12 and since there is 4 of the triangles you do 12*4 which is 48 but when it's a triangle you have to cut it in half so it would really be 24.

Then for the square on the bottom you would do 4*4 which is 16 and then you would add the totals to get 40.

You might be interested in
Who gets more chips: 5 people sharing 3 bags of chips or 7 people sharing 2 bags?
MAXImum [283]
5 people sharing 3 bags
6 0
3 years ago
Read 2 more answers
Express 3^4 = x as a logarithmic equation.
meriva

Note that the base in both the exponential form of the equation and the logarithmic form of the equation (above) is "b<span>", but that the </span>x<span> and </span>y<span> switch sides when you switch between the two equations. If you can remember this — that whatever had been the argument of the log becomes the "equals" and whateverhad been the "equals" becomes the exponent in the exponential, and vice versa — then you should not have too much trouble with solving log equations.</span>

<span><span>Solve </span><span>log2(x) = 4</span>.</span>

<span>Since this is "log equals a number", rather than "log equals log", I can solve by using The Relationship:<span><span> 
</span><span> </span></span><span>log2(x) = 4</span> <span>
24 = x</span><span> 
</span><span>16 = x</span></span>

<span><span><span>Solve </span><span>log2(</span></span>8<span><span>) = x</span>.</span></span>

<span>I can solve this by converting the logarithmic statement into its equivalent exponential form, using The Relationship:<span>log2(8) = x</span><span> 
</span>2<span> x</span><span> = 8</span><span>But </span><span>8 = 23</span>, so:2<span> x</span><span> = 23</span><span> 
</span><span>x = 3</span></span>

Note that this could also have been solved by working directly from the definition of a logarithm: What power, when put on "2<span>", would give you an </span>8<span>? The power </span>3, of course!

If you wanted to give yourself a lot of work, you could also do this one in your calculator, using the change-of-base formula:

<span>log2(8) = ln(8) / ln(2)</span>

Plug this into your calculator, and you'll get "3" as your answer. While this change-of-base technique is not particularly useful in this case, you can see that it does work. (Try it on your calculator, if you haven't already, so you're sure you know which keys to punch, and in which order.) You will need this technique in later problems.

<span><span>Solve </span><span>log2(x) + log2(x – 2) = 3</span></span><span><span>I can't do anything yet, because I don't yet have "log equals a number". So I'll need to use </span>log rules<span> to combine the two terms on the left-hand side of the equation:</span><span>log2(x) + log2(x – 2) = 3</span> <span>
log2((x)(x – 2)) = 3</span> <span>
log2(x2 – 2x) = 3</span>Then I'll use The Relationship to convert the log form to the corresponding exponential form, and then I'll solve the result:<span>log2(x2 – 2x) = 3</span> <span>
23 = x2 – 2x</span> <span>
8 = x2 – 2x</span> <span>
0 = x2 – 2x – 8</span> <span>
0 = (x – 4)(x + 2)</span> <span>
x = 4, –2</span><span>But if </span><span>x = –2</span>, then "<span>log2(x)</span>", from the original logarithmic equation, will have a negative number for its argument (as will the term "<span>log2(x – 2)"</span><span>). Since logs cannot have zero or negative arguments, then the solution to the original equation cannot be </span><span>x = –2</span>.<span><span>The solution is </span><span>x = 4</span>.</span></span>

Keep in mind that you can check your answers to any "solving" exercise by plugging those answers back into the original equation and checking that the solution "works":

<span>log2(x) + log2(x – 2) = 3</span> <span>
log2(4) + log2(4 – 2) ?=? 3</span> <span>
log2(4) + log2(2) ?=? 3</span>

Since the power that turns "2" into "4<span>" is </span>2<span> and the power that turns "</span>2" into "2" is "1", then we have:

<span>log2(4) + log2(2) ?=? 3</span> <span>
log2(2</span>2<span>) + log2(2</span>1) ?=? 3 <span>
2 + 1 ?=? 3</span> <span>
3 = 3</span>

The solution checks. Copyright © Elizabeth Stapel 2002-2011 All Rights Reserved

<span><span>Solve </span><span>log2(log2(x))   = 1.</span></span><span>This may look overly-complicated, but it's just another log equation. To solve this, I'll need to apply The Relationship twice:<span>log2(log2(x)) = 1</span> 
21 = <span>log2(x)</span> <span>
2 = log2(x)</span> <span>
x = 22</span> <span>
x = 4</span><span>Then the solution is </span><span>x = 4</span>.</span><span><span>Solve </span><span>log2(x2)  = (log2(x))2</span>.</span><span>First, I'll write out the square on the right-hand side:<span>log2(x2) = (log2(x))2</span> <span>
log2(x2) = (log2(x)) (log2(x))</span>Then I'll apply the log rule to move the "squared", from inside the log on the left-hand side of the equation, out in front of that log as a multiplier. Then I'll move that term to the right-hand side:<span>2log2(x) = [log2(x)] [log2(x)]</span> <span>
0 = [log2(x)] [log2(x)]  –  2log2(x)</span>This may look bad, but it's nothing more than a factoring exercise at this point. So I'll factor, and then I'll solve the factors by using The Relationship:<span>0 = </span><span>[log2(x)] [log2(x) – 2]</span> <span>
log2(x) = 0  or  log2(x) – 2 = 0</span> <span>
20 = x   or  log2(x) = 2</span> <span>
1 = x  or  22 = x</span> <span>
1 = x  or  4 = x</span><span><span>The solution is </span><span>x = 1, 4</span><span>.</span></span></span>
3 0
3 years ago
Read 2 more answers
write the expression for "A water tank contains gallons of water when it begins to drain at a rate gallons per minute"
agasfer [191]

Step-by-step explanation:

lets \: assume \: the \: water \: gallon \: has \: 1000litres \\

1000 = 0.25x

0.25 Is the rate and x is how many minutes

4 0
3 years ago
Which of the following is an example of a census?
atroni [7]

Answer:

B

Step-by-step explanation:

because its something thats important and needs to be done

7 0
3 years ago
Construct a 95% confidence interval for the true difference in proportions of male and female smokers. Use p1^ for the proportio
Alborosie

Answer:

ok?

Step-by-step explanation:

4 0
4 years ago
Other questions:
  • Simplify the expression 1+2*[(3+1)*5+3]
    6·2 answers
  • How many flags can be made with 3 different color stripes each color can only be used once?colors Red, Blue, &amp; Yellow.you ge
    8·2 answers
  • What mixed number is equivalent to 24/5
    7·1 answer
  • What is the 10th term in -9,-6,-1,6,15
    10·1 answer
  • EASY MATH PLEASE HELP
    15·1 answer
  • The sum of two numbers is 52 . The larger number is 2 less than twice the smaller number .What are the numbers
    5·1 answer
  • Rosa says her baby sister is one yard tall. How tall is Rosa's sister is inches?
    5·2 answers
  • To paint his room ted prepared 2 gallons of a paint mixture at a ratio of 3:1 white to blue. If he later decide to dilute the co
    5·1 answer
  • PLEASE ANSWER (Photo Down Below)
    15·1 answer
  • Write an equation for the line passing through the given pair of points. Give the final answer in (a) slope-intercept form and (
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!