Answer: E. Never
geometric average return can NEVER exceed the arithmetic average return for a given set of returns
Explanation:
The arithmetic average return is always higher than the other average return measure called the geometric average return. The arithmetic return ignores the compounding effect and order of returns and it is misleading when the investment returns are volatile.
Arithmetic returns are the everyday calculation of the average. You take the series of returns (in this case, annual figures), add them up, and then divide the total by the number of returns in the series. Geometric returns (also called compound returns) involve slightly more complicated maths.
Answer:
def newton(n):
#Define the variables.
t = 0.000001
esti = 1.0
#Calculate the square root
#using newton method.
while True:
esti = (esti + n / esti) / 2
dif = abs(n - esti ** 2)
if dif <= t:
break
#Return the result.
return esti
#Define the main function.
def main():
#Continue until user press enters.
while True:
try:
#Prompt the user for input.
n = int(input("Enter a number (Press Enter to stop):"))
#display the results.
print("newton = %0.15f" % newton(n))
except:
return
#Call the main function.
main()
Answer:
Hi, in the law of Moore we can express aproxitmaly for each <em>two years</em> is duplicated the number of transitors in a microprocessor.
Explanation:
In around 26 years the number of transitors has increased about 3200 times, a transitor is a way to regulate the current voltage flow and can be act like a <em>switch</em> for an electronic signal.
I hope it's help you.
The answer to your question is a
Answer:
im pretty sure it MM/DD/YYYY
Explanation: