Answer:
(a) The expected number of should a salesperson expect until she finds a customer that makes a purchase is 0.9231.
(b) The probability that a salesperson helps 3 customers until she finds the first person to make a purchase is 0.058.
Step-by-step explanation:
Let<em> </em>the random variable <em>X</em> be defined as the number of customers the salesperson assists before a customer makes a purchase.
The probability that a customer makes a purchase is, <em>p</em> = 0.52.
The random variable <em>X</em> follows a Geometric distribution since it describes the distribution of the number of trials before the first success.
The probability mass function of <em>X</em> is:

The expected value of a Geometric distribution is:

(a)
Compute the expected number of should a salesperson expect until she finds a customer that makes a purchase as follows:


This, the expected number of should a salesperson expect until she finds a customer that makes a purchase is 0.9231.
(b)
Compute the probability that a salesperson helps 3 customers until she finds the first person to make a purchase as follows:

Thus, the probability that a salesperson helps 3 customers until she finds the first person to make a purchase is 0.058.
Answer:
A) v = T/2 - 5
Step-by-step explanation:
T = 10+2v
2v = T-10
v = (T-10)/2 = T/2-5
5) The slope is: 6
6) Answer: y=-1/2x+3
7) Answer: The slope is: -8, the y intercept is: 6
8) Answer: y=8x+30
Have a good day and a hug :D づ◡﹏◡)づ
<h2>
Answer:</h2>
cos 28°cos 62°– sin 28°sin 62° = 0
<h2>
Step-by-step explanation:</h2>
From one of the trigonometric identities stated as follows;
<em>cos(A+B) = cosAcosB - sinAsinB -----------------(i)</em>
We can apply such identity to solve the given expression.
<em>Given:</em>
cos 28°cos 62°– sin 28°sin 62°
<em>Comparing the given expression with the right hand side of equation (i), we see that;</em>
A = 28°
B = 62°
<em>∴ Substitute these values into equation (i) to have;</em>
<em>⇒ cos(28°+62°) = cos28°cos62° - sin28°sin62°</em>
<em />
<em>Solve the left hand side.</em>
<em>⇒ cos(90°) = cos28°cos62° - sin28°sin62°</em>
⇒ 0 = <em>cos28°cos62° - sin28°sin62° (since cos 90° = 0)</em>
<em />
<em>Therefore, </em>
<em>cos28°cos62° - sin28°sin62° = 0</em>
<em />
<em />