<span> This is an example of a quantitative </span><span>observation</span>
DNA contains sugar deoxyribose, while RNA contains sugar ribose,
DNA is a double-stranded molecule, while RNA is a single-stranded molecule.
Answer:
The bloodstream carries glucose a type of sugar produced from the digestion of carbohydrates and other foods-to provide energy to cells throughout the body
Explanation:
Answer: Antibiotics targets the synthesis of protein, nucleic acid, folate and cell wall.
1. Synthesis of protein; antibiotics binds to either 30s or 50s ribosomal subunits blocking the polypeptide from the exiting the tunnel thus inhibiting a full completion of protein expression or production.
2. Nucleic acid synthesis; Antibiotics also act by inhibiting genetic expression, DNA transcription and replication where DNA makes exact copies of itself, as well as RNA molecules preventing bacterial growth.
3. Cell wall synthesis; Inhibition of cell wall synthesis in microorganisms will prevent it from replication and growth.
4. Folate synthesis; Folic acid also known as vitamin B9 helps in DNA replication and cell division. Folate antagonists such as aminopterin kills bacteria by preventing folic acid production required for DNA replication.
Answer:
A. NADH and FADH2 both donate electrons at the same location.
Explanation:
In the respiratory chain, four large protein complexes inserted into the mitochondrial inner membrane transport NADH and FADH₂ electrons (formed in glycolysis and the Krebs cycle) to oxygen gas, reducing them to NAD⁺ and FAD, respectively.
These electrons have great affinity for oxygen gas and, when combined with it, reduce it to water molecules at the end of the reaction.
Oxygen gas effectively participates in cellular respiration at this stage, so its absence would imply interruption of the process.
NADH and FADH₂ electrons, when attracted to oxygen, travel a path through protein complexes, releasing energy in this process.
The energy released by the NADH and FADH₂ electrons in the respiratory chain in theory yields <u>34</u> <u>ATP</u>, however, under normal conditions an average of 26 ATP molecules is formed.
If we consider that these 26 molecules are added to the two ATP formed in glycolysis and two ATP formed in the Krebs cycle, it can be said that cellular respiration reaches a maximum yield of 30 ATP per glucose molecule, although theoretically this number was 38 ATP per glucose molecule.