![\bf \textit{using the 2nd fundamental theorem of calculus}\\\\ \cfrac{dy}{dx}\displaystyle \left[ \int\limits_{0}^{x}\ cos^{-1}(t)dt \right]\implies cos^{-1}(x) \\\\\\ f'(0.3)\iff cos^{-1}(0.3)\approx 1.26610367277949911126](https://tex.z-dn.net/?f=%5Cbf%20%5Ctextit%7Busing%20the%202nd%20fundamental%20theorem%20of%20calculus%7D%5C%5C%5C%5C%0A%5Ccfrac%7Bdy%7D%7Bdx%7D%5Cdisplaystyle%20%5Cleft%5B%20%5Cint%5Climits_%7B0%7D%5E%7Bx%7D%5C%20cos%5E%7B-1%7D%28t%29dt%20%5Cright%5D%5Cimplies%20cos%5E%7B-1%7D%28x%29%0A%5C%5C%5C%5C%5C%5C%0Af%27%280.3%29%5Ciff%20cos%5E%7B-1%7D%280.3%29%5Capprox%201.26610367277949911126)
now.. 0.3 is just a value...we'e assuming Radians for the inverse cosine, so, if you check, make sure your calculator is in Radian mode
Hey mate here is your answer.
➛ 6(x-2) = 4(x+3)
➛ 6x-12 = 4x + 12
➛ 6x - 4x = 12 + 12
➛ 2x = 24
➛ x = 
⛬ x = 12
Answer:
73
Step-by-step explanation:
you write 12 instead of b
You really just have to do 12.4 x 2 = 24.8 because half of 24.8 is 12.4.