1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
jok3333 [9.3K]
3 years ago
15

last month Stephanie spent $57 on 4 allergy shots and 1 office visit .This month she spent $9 after 1 office visit and a refund

for 2 allergy shots from her insurance company . How much does an office visit cost an allergy shot?
Mathematics
1 answer:
Sergeu [11.5K]3 years ago
6 0

Visit $25 allergy shot $8

4a + 1v =57

-2a +1v= 9

I will multiply the second by -1 to cancel v variable (elimination method)

4a +1v =57

2a -1v = - 9

add both

6a. = 48

a= 8

4a= 32

32 + v = 57

v= 25

32+25 = 57

-16 +25=9

You might be interested in
Solve : <br>4² ( 4³ )<br>with work shown ​
stepan [7]

Answer:

1024

Step-by-step explanation:

4²(4³)

4×4(4×4×4)

16(16×4)

16(64)

16×64

=1024

7 0
3 years ago
Please answer and put how
muminat
6 + m/4 = 3 (subtract 6 from both sides)
m/4 = -3 (multiply both sides by 4)
m = -12

Can plug in to original equation to check work:
6 - 12/4 = 3
6 - 3 = 3
3 = 3 

The answer m = -12 checks out
3 0
3 years ago
Read 2 more answers
WILL GIVE BRAINLIEST
grandymaker [24]

Answer:

B  the service fee for coming to look at the machine

Step-by-step explanation:

4 0
3 years ago
Find the six trig function values of the angle 240*Show all work, do not use calculator
-BARSIC- [3]

Solution:

Given:

240^0

To get sin 240 degrees:

240 degrees falls in the third quadrant.

In the third quadrant, only tangent is positive. Hence, sin 240 will be negative.

sin240^0=sin(180+60)

Using the trigonometric identity;

sin(x+y)=sinx\text{ }cosy+cosx\text{ }siny

Hence,

\begin{gathered} sin(180+60)=sin180cos60+cos180sin60 \\ sin180=0 \\ cos60=\frac{1}{2} \\ cos180=-1 \\ sin60=\frac{\sqrt{3}}{2} \\  \\ Thus, \\ sin180cos60+cos180sin60=0(\frac{1}{2})+(-1)(\frac{\sqrt{3}}{2}) \\ sin180cos60+cos180sin60=0-\frac{\sqrt{3}}{2} \\ sin180cos60+cos180sin60=-\frac{\sqrt{3}}{2} \\  \\ Hence, \\ sin240^0=-\frac{\sqrt{3}}{2} \end{gathered}

To get cos 240 degrees:

240 degrees falls in the third quadrant.

In the third quadrant, only tangent is positive. Hence, cos 240 will be negative.

cos240^0=cos(180+60)

Using the trigonometric identity;

cos(x+y)=cosx\text{ }cosy-sinx\text{ }siny

Hence,

\begin{gathered} cos(180+60)=cos180cos60-sin180sin60 \\ sin180=0 \\ cos60=\frac{1}{2} \\ cos180=-1 \\ sin60=\frac{\sqrt{3}}{2} \\  \\ Thus, \\ cos180cos60-sin180sin60=-1(\frac{1}{2})-0(\frac{\sqrt{3}}{2}) \\ cos180cos60-sin180sin60=-\frac{1}{2}-0 \\ cos180cos60-sin180sin60=-\frac{1}{2} \\  \\ Hence, \\ cos240^0=-\frac{1}{2} \end{gathered}

To get tan 240 degrees:

240 degrees falls in the third quadrant.

In the third quadrant, only tangent is positive. Hence, tan 240 will be positive.

tan240^0=tan(180+60)

Using the trigonometric identity;

tan(180+x)=tan\text{ }x

Hence,

\begin{gathered} tan(180+60)=tan60 \\ tan60=\sqrt{3} \\  \\ Hence, \\ tan240^0=\sqrt{3} \end{gathered}

To get cosec 240 degrees:

\begin{gathered} cosec\text{ }x=\frac{1}{sinx} \\ csc240=\frac{1}{sin240} \\ sin240=-\frac{\sqrt{3}}{2} \\  \\ Hence, \\ csc240=\frac{1}{\frac{-\sqrt{3}}{2}} \\ csc240=-\frac{2}{\sqrt{3}} \\  \\ Rationalizing\text{ the denominator;} \\ csc240=-\frac{2}{\sqrt{3}}\times\frac{\sqrt{3}}{\sqrt{3}} \\  \\ Thus, \\ csc240^0=-\frac{2\sqrt{3}}{3} \end{gathered}

To get sec 240 degrees:

\begin{gathered} sec\text{ }x=\frac{1}{cosx} \\ sec240=\frac{1}{cos240} \\ cos240=-\frac{1}{2} \\  \\ Hence, \\ sec240=\frac{1}{\frac{-1}{2}} \\ sec240=-2 \\  \\ Thus, \\ sec240^0=-2 \end{gathered}

To get cot 240 degrees:

\begin{gathered} cot\text{ }x=\frac{1}{tan\text{ }x} \\ cot240=\frac{1}{tan240} \\ tan240=\sqrt{3} \\  \\ Hence, \\ cot240=\frac{1}{\sqrt{3}} \\  \\ Rationalizing\text{ the denominator;} \\ cot240=\frac{1}{\sqrt{3}}\times\frac{\sqrt{3}}{\sqrt{3}} \\  \\ Thus, \\ cot240^0=\frac{\sqrt{3}}{3} \end{gathered}

5 0
1 year ago
Which word creates the verb mood error in this sentence: "If I was taller, I could reach the top shelf"? Could Top Was Reach
Stells [14]
It would be correctly(C)
6 0
3 years ago
Read 2 more answers
Other questions:
  • I attatched the problem
    13·2 answers
  • What is the smallest number that rounds to 30,000 why​
    6·1 answer
  • Y=4x-3; A(5,17) Use substitution to determine whether the point is on the line.
    14·1 answer
  • Over the course of one day, a store owner determined that 80% of customers bought a drink and 30% of customers bought a snack. I
    7·1 answer
  • Which Biconditional is not a good definition
    11·1 answer
  • A candy store owner has 8.32 pounds of jelly beans. If
    8·1 answer
  • What is the equation, in slope-intercept form, of the line that passes through the points (−24, 5) and (16, −20)?
    11·1 answer
  • X-y=−3 slope intercept form
    15·1 answer
  • PL has endpoints P(4, −6) and L(−2, 1). The segment is translated using the mapping (x, y) → (x 5, y). What are the coordinates
    9·2 answers
  • 1.which expression is equivalent to x² 10x 24?(x 1)(x 24)(x 4)(x 6)(x 2)(x 12)(x 3)(x 8)
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!