Answer:
y=88 x=42
Step-by-step explanation:
Since the total measurments of one triangle have to equal 180 and one angle is already 50, and the angle on the oppisite side of the y angle is 90 the only logical number for y would be 88. Hope this helped :)
Answer:

Step-by-step explanation:
Consider the selling of the units positive earning and the purchasing of the units negative earning.
<h3>Case-1:</h3>
- Mr. A purchases 4 units of Z and sells 3 units of X and 5 units of Y
- Mr.A earns Rs6000
So, the equation would be

<h3>Case-2:</h3>
- Mr. B purchases 3 units of Y and sells 2 units of X and 1 units of Z
- Mr B neither lose nor gain meaning he has made 0₹
hence,

<h3>Case-3:</h3>
- Mr. C purchases 1 units of X and sells 4 units of Y and 6 units of Z
- Mr.C earns 13000₹
therefore,

Thus our system of equations is

<u>Solving </u><u>the </u><u>system </u><u>of </u><u>equations</u><u>:</u>
we will consider elimination method to solve the system of equations. To do so ,separate the equation in two parts which yields:

Now solve the equation accordingly:

Solving the equation for x and y yields:

plug in the value of x and y into 2x - 3y + z = 0 and simplify to get z. hence,

Therefore,the prices of commodities X,Y,Z are respectively approximately 1477, 1464, 1437
ANSWER

EXPLANATION
The general term for the sequence is

To find the 55th term, we have to substitute

in to the general term and simplify.
This implies that,




Therefore the 55th term is 161.
The value of x is 4
so it says that 3 times __ equals 12.
so that means that u have to do 12/3 Wi-Fi i equals 4, so that is how u do it
hope this helps!!
The first step is to quickly factor each of the five equations... to do so, find the right factors of the 3rd given number so that they add up in an equal number to the second number... 14 = -7 • -2 and -9 = -7 + -2
a^2 - 9a + 14 = 0
(a - 7) (a - 2)
a - 7 = 0, a = 7
a - 2 = 0, a = 2
{2,7}
a^2 + 9a + 14 = 0
(a + 7) (a + 2)
a + 7 = 0, a = -7
a + 2 = 0, a = -2
{-2, -7}
a^2 + 3a - 10 = 0
(a + 5) (a - 2)
a + 5 = 0, a = -5
a - 2 = 0, a = 2
{-5, 2}
a^2 - 5a - 14 = 0
(a - 7) (a + 2)
a - 7 = 0, a = 7
a + 2 = 0, a = -2
{-2, 7}