Answer:
y≥3x-1
Step-by-step explanation:
i did the thing
and y≥the mx+b
m=slope
b=y intercept
the symbol determines which way the shaded part faces
pls mark brainliest
<h3>Given</h3>
tan(x)²·sin(x) = tan(x)²
<h3>Find</h3>
x on the interval [0, 2π)
<h3>Solution</h3>
Subtract the right side and factor. Then make use of the zero-product rule.
... tan(x)²·sin(x) -tan(x)² = 0
... tan(x)²·(sin(x) -1) = 0
This is an indeterminate form at x = π/2 and undefined at x = 3π/2. We can resolve the indeterminate form by using an identity for tan(x)²:
... tan(x)² = sin(x)²/cos(x)² = sin(x)²/(1 -sin(x)²)
Then our equation becomes
... sin(x)²·(sin(x) -1)/((1 -sin(x))(1 +sin(x))) = 0
... -sin(x)²/(1 +sin(x)) = 0
Now, we know the only solutions are found where sin(x) = 0, at ...
... x ∈ {0, π}
6,00 because you have to add them up then divide the the last nimber and you should get 6,000
The fare of $(20 - 2.5) = $17.5 will maximize the total fare.
<h3>What is Differentiation?</h3>
Differentiation means the rate of change of one quantity with respect to another. The speed is calculated as the rate of change of distance with respect to time.
Here, The operator for a round-trip fare of $20, carries an average of 500 people per day.
It is estimated that 20 fewer people will take the trip, for each $1 increase in fare.
for $x increase in fare, 20x less people will take the trip and at that time the total fare F is given by
f(x) =(20 + x)(500 - 20x)
f (x) = 10000 + 100x - 20x²
For f(x) to be maximum, the condition is dy/dx = 0
100 - 40x = 0
⇒ x = 2.5
Thus, the fare of $(20 - 2.5) = $17.5 will maximize the total fare.
Learn more about Differentiation from:
brainly.com/question/24062595
#SPJ1