1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Virty [35]
3 years ago
6

51=3kbut what is k?tysm for everyone helping me:)

Mathematics
1 answer:
Kaylis [27]3 years ago
8 0

Answer:

17

Step-by-step explanation:

51÷3 = 17

k=17

not sure what else to add but my answer had to be longer

You might be interested in
What related multiplication problem can help you find the quotient?<br> -6 divided 3
AleksAgata [21]
Answer: 3 • ? = -6

Reasoning: -6/ 3 = -2
3 • -2 = -6
8 0
2 years ago
Write an<br> expression to represent:<br> The sum of ten and the quotient of a number and 6.
hoa [83]

Answer:

10 + x/6

Step-by-step explanation:

8 0
3 years ago
use the identity below to complete the tasks a^3-b^3=(a-b)(a^2+ab+b^2) when using the identity for the difference of two cubes t
zheka24 [161]

Answer:

see explanation

Step-by-step explanation:

Given that the the difference of  cubes is

a³ - b³ = (a - b)(a² + ab + b²)

Given

64x^{6} - 27 ← a difference of cubes

with a = 4x² and b = 3, thus

= (4x²)³ - 3³

= (4x² - 3)(16x^{4} + 12x² + 9) ← in factored form

7 0
3 years ago
Read 2 more answers
If <img src="https://tex.z-dn.net/?f=%5Cmathrm%20%7By%20%3D%20%28x%20%2B%20%5Csqrt%7B1%2Bx%5E%7B2%7D%7D%29%5E%7Bm%7D%7D" id="Tex
Harman [31]

Answer:

See below for proof.

Step-by-step explanation:

<u>Given</u>:

y=\left(x+\sqrt{1+x^2}\right)^m

<u>First derivative</u>

\boxed{\begin{minipage}{5.4 cm}\underline{Chain Rule for Differentiation}\\\\If  $f(g(x))$ then:\\\\$\dfrac{\text{d}y}{\text{d}x}=f'(g(x))\:g'(x)$\\\end{minipage}}

<u />

<u />\boxed{\begin{minipage}{5 cm}\underline{Differentiating $x^n$}\\\\If  $y=x^n$, then $\dfrac{\text{d}y}{\text{d}x}=xn^{n-1}$\\\end{minipage}}

<u />

\begin{aligned} y_1=\dfrac{\text{d}y}{\text{d}x} & =m\left(x+\sqrt{1+x^2}\right)^{m-1} \cdot \left(1+\dfrac{2x}{2\sqrt{1+x^2}} \right)\\\\ & =m\left(x+\sqrt{1+x^2}\right)^{m-1} \cdot \left(1+\dfrac{x}{\sqrt{1+x^2}} \right) \\\\ & =m\left(x+\sqrt{1+x^2}\right)^{m-1} \cdot \left(\dfrac{x+\sqrt{1+x^2}}{\sqrt{1+x^2}} \right)\\\\ & = \dfrac{m}{\sqrt{1+x^2}} \cdot \left(x+\sqrt{1+x^2}\right)^{m-1}  \cdot \left(x+\sqrt{1+x^2}\right)\\\\ & = \dfrac{m}{\sqrt{1+x^2}}\left(x+\sqrt{1+x^2}\right)^m\end{aligned}

<u>Second derivative</u>

<u />

\boxed{\begin{minipage}{5.5 cm}\underline{Product Rule for Differentiation}\\\\If  $y=uv$  then:\\\\$\dfrac{\text{d}y}{\text{d}x}=u\dfrac{\text{d}v}{\text{d}x}+v\dfrac{\text{d}u}{\text{d}x}$\\\end{minipage}}

\textsf{Let }u=\dfrac{m}{\sqrt{1+x^2}}

\implies \dfrac{\text{d}u}{\text{d}x}=-\dfrac{mx}{\left(1+x^2\right)^\frac{3}{2}}

\textsf{Let }v=\left(x+\sqrt{1+x^2}\right)^m

\implies \dfrac{\text{d}v}{\text{d}x}=\dfrac{m}{\sqrt{1+x^2}} \cdot \left(x+\sqrt{1+x^2}\right)^m

\begin{aligned}y_2=\dfrac{\text{d}^2y}{\text{d}x^2}&=\dfrac{m}{\sqrt{1+x^2}}\cdot\dfrac{m}{\sqrt{1+x^2}}\cdot\left(x+\sqrt{1+x^2}\right)^m+\left(x+\sqrt{1+x^2}\right)^m\cdot-\dfrac{mx}{\left(1+x^2\right)^\frac{3}{2}}\\\\&=\dfrac{m^2}{1+x^2}\cdot\left(x+\sqrt{1+x^2}\right)^m+\left(x+\sqrt{1+x^2}\right)^m\cdot-\dfrac{mx}{\left(1+x^2\right)\sqrt{1+x^2}}\\\\ &=\left(x+\sqrt{1+x^2}\right)^m\left(\dfrac{m^2}{1+x^2}-\dfrac{mx}{\left(1+x^2\right)\sqrt{1+x^2}}\right)\\\\\end{aligned}

              = \dfrac{\left(x+\sqrt{1+x^2}\right)^m}{1+x^2}\right)\left(m^2-\dfrac{mx}{\sqrt{1+x^2}}\right)

<u>Proof</u>

  (x^2+1)y_2+xy_1-m^2y

= (x^2+1) \dfrac{\left(x+\sqrt{1+x^2}\right)^m}{1+x^2}\left(m^2-\dfrac{mx}{\sqrt{1+x^2}}\right)+\dfrac{mx}{\sqrt{1+x^2}}\left(x+\sqrt{1+x^2}\right)^m-m^2\left(x+\sqrt{1+x^2\right)^m

= \left(x+\sqrt{1+x^2}\right)^m\left(m^2-\dfrac{mx}{\sqrt{1+x^2}}\right)+\dfrac{mx}{\sqrt{1+x^2}}\left(x+\sqrt{1+x^2}\right)^m-m^2\left(x+\sqrt{1+x^2\right)^m

= \left(x+\sqrt{1+x^2}\right)^m\left[m^2-\dfrac{mx}{\sqrt{1+x^2}}+\dfrac{mx}{\sqrt{1+x^2}}-m^2\right]

= \left(x+\sqrt{1+x^2}\right)^m\left[0]

= 0

8 0
1 year ago
Use the Rational Zeros Theorem to write a list of all possible rational zeros of the function.
marishachu [46]

Answer:

\text{Possible rational zeros}=\pm1,\pm\frac{1}{2},\pm2,\pm3,\pm\frac{3}{2},\pm6,\pm9,\pm\frac{9}{2},\pm18

Step-by-step explanation:

We have been given the function

f(x)=-2x^2+4x^3+3x^2+18

From the rational zeros theorem, we have

\text{Possible rational zeros}=\pm\frac{\text{Factors of constant term}}{\text{Factors of leading coefficient}}

From the given function,

Leading coefficient = 2

Factors of 2 are 1,2

Constant term = 18

Factors of constant term = 1, 2, 3, 6, 9, 18

Hence, we have

\text{Possible rational zeros}=\pm\frac{1,2,3,6,9,18}{1,2}\\\\\text{Possible rational zeros}=\pm1,\pm\frac{1}{2},\pm2,\pm3,\pm\frac{3}{2},\pm6,\pm9,\pm\frac{9}{2},\pm18

6 0
3 years ago
Other questions:
  • In the given figure, values of x and y, are 1. 40°, 25° 2. 30°, 40° 3. 30°, 20° 4. 40°, 35°
    10·1 answer
  • Can someone help me
    7·1 answer
  • Solve for c<br><br> 2 ( 2c + 9 ) = c <br><br> c = ??
    10·2 answers
  • Based on the table below, evaluate f(1).
    15·1 answer
  • Do alien raviolis exist?
    5·1 answer
  • The velocity of a car was 30m/s when the driver pushed the brake of the car and it stopped after 2 seconds. Assume that the acce
    15·1 answer
  • What is the rate of change of function g?
    10·1 answer
  • HELP I NEED THE ANSWERS FOR ALL OF THESE QUESTIONS!
    7·1 answer
  • Someone pls help me answer this prompt
    11·1 answer
  • Can someone plz help with this?
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!