Answer:
1. 50 is 20% of 250
Step-by-step explanation:
In order to find any of these, use the equation.
Number/Out of = %
Then plug in the values
50/x = .20
Then solve by cross multiplying
50 = .20x
250 = x
-2+4 is 2/2 is (1,y)
4+0 divided by 2 is 2
coordinate is (1,2)

well, for both angles A and B we're on the IV Quadrant, meaning, the sine is negative, the cosine is positive, likewise, the opposite side is negative and the adjacent side for the angle is positive.
![\bf cos(A)=\cfrac{\stackrel{adjacent}{3}}{\underset{hypotenuse}{5}}\qquad \qquad \stackrel{\textit{getting the opposite side}}{b=\pm\sqrt{5^2-3^2}}\implies b = \pm 4 \\\\\\ \stackrel{IV~Quadrant}{b = -4}\qquad \qquad sin(A)=\cfrac{\stackrel{opposite}{-4}}{\underset{hypotenuse}{5}} \\\\[-0.35em] ~\dotfill\\\\ cos(B)=\cfrac{\stackrel{adjacent}{12}}{\underset{hypotenuse}{13}}\qquad \qquad \stackrel{\textit{getting the opposite side}}{b=\pm\sqrt{13^2-12^2}}\implies b = \pm 5](https://tex.z-dn.net/?f=%5Cbf%20cos%28A%29%3D%5Ccfrac%7B%5Cstackrel%7Badjacent%7D%7B3%7D%7D%7B%5Cunderset%7Bhypotenuse%7D%7B5%7D%7D%5Cqquad%20%5Cqquad%20%5Cstackrel%7B%5Ctextit%7Bgetting%20the%20opposite%20side%7D%7D%7Bb%3D%5Cpm%5Csqrt%7B5%5E2-3%5E2%7D%7D%5Cimplies%20b%20%3D%20%5Cpm%204%20%5C%5C%5C%5C%5C%5C%20%5Cstackrel%7BIV~Quadrant%7D%7Bb%20%3D%20-4%7D%5Cqquad%20%5Cqquad%20sin%28A%29%3D%5Ccfrac%7B%5Cstackrel%7Bopposite%7D%7B-4%7D%7D%7B%5Cunderset%7Bhypotenuse%7D%7B5%7D%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20cos%28B%29%3D%5Ccfrac%7B%5Cstackrel%7Badjacent%7D%7B12%7D%7D%7B%5Cunderset%7Bhypotenuse%7D%7B13%7D%7D%5Cqquad%20%5Cqquad%20%5Cstackrel%7B%5Ctextit%7Bgetting%20the%20opposite%20side%7D%7D%7Bb%3D%5Cpm%5Csqrt%7B13%5E2-12%5E2%7D%7D%5Cimplies%20b%20%3D%20%5Cpm%205)
![\bf \stackrel{IV~Quadrant}{b = -5}\qquad \qquad sin(B)=\cfrac{\stackrel{opposite}{-5}}{\underset{hypotenuse}{13}} \\\\[-0.35em] ~\dotfill\\\\ sin(A-B)=\cfrac{-4}{5}\cdot \cfrac{12}{13}-\left( \cfrac{3}{5}\cdot \cfrac{-5}{13} \right)\implies sin(A-B)=\cfrac{-48}{65} - \left( \cfrac{-15}{65} \right) \\\\\\ sin(A-B)=\cfrac{-48}{65} + \cfrac{15}{65}\implies sin(A-B)=\cfrac{-33}{65}](https://tex.z-dn.net/?f=%5Cbf%20%5Cstackrel%7BIV~Quadrant%7D%7Bb%20%3D%20-5%7D%5Cqquad%20%5Cqquad%20sin%28B%29%3D%5Ccfrac%7B%5Cstackrel%7Bopposite%7D%7B-5%7D%7D%7B%5Cunderset%7Bhypotenuse%7D%7B13%7D%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20sin%28A-B%29%3D%5Ccfrac%7B-4%7D%7B5%7D%5Ccdot%20%5Ccfrac%7B12%7D%7B13%7D-%5Cleft%28%20%5Ccfrac%7B3%7D%7B5%7D%5Ccdot%20%5Ccfrac%7B-5%7D%7B13%7D%20%5Cright%29%5Cimplies%20sin%28A-B%29%3D%5Ccfrac%7B-48%7D%7B65%7D%20-%20%5Cleft%28%20%5Ccfrac%7B-15%7D%7B65%7D%20%5Cright%29%20%5C%5C%5C%5C%5C%5C%20sin%28A-B%29%3D%5Ccfrac%7B-48%7D%7B65%7D%20%2B%20%5Ccfrac%7B15%7D%7B65%7D%5Cimplies%20sin%28A-B%29%3D%5Ccfrac%7B-33%7D%7B65%7D)
<h2>
Explanation:</h2><h2>
</h2>
Here we have the following rational function:

So the graph of this function is shown in the First Figure below. Let's define another function which is a parent function:

Whose graph is shown in the second figure below. So we can get the graph of f from the graph of g this way:
Step 1. Shift the graph 3 units to the left:

Step 2. Shift the graph 2 units down:

Finally, the features of the graph of f are:
The graph of this function comes from the parent function g and the transformations are:
- A shifting 3 units to the left
Answer: the third answer (C)
Step-by-step explanation: