Answer:
Two or more independent functions (say f(x) and g(x)) can be combined to generate a new function (say g(x)) using any of the following approach.
h(x) = f(x) + g(x)h(x)=f(x)+g(x) h(x) = f(x) - g(x)h(x)=f(x)−g(x)
h(x) = \frac{f(x)}{g(x)}h(x)=
g(x)
f(x)
h(x) = f(g(x))h(x)=f(g(x))
And many more.
The approach or formula to use depends on the question.
In this case, the combined function is:
f(x) = 75+ 10xf(x)=75+10x
The savings function is given as
s(x) = 85s(x)=85
The allowance function is given as:
a(x) = 10(x - 1)a(x)=10(x−1)
The new function that combined his savings and his allowances is calculated as:
f(x) = s(x) + a(x)f(x)=s(x)+a(x)
Substitute values for s(x) and a(x)
f(x) = 85 + 10(x - 1)f(x)=85+10(x−1)
Open bracket
f(x) = 85 + 10x - 10f(x)=85+10x−10
Collect like terms
mark as brainiest
f(x) = 85 - 10+ 10xf(x)=85−10+10x
f(x) = 75+ 10xf(x)=75+10x
The intensity level is hard and for the first part, it’s 168. and something. Sorry that’s all I figured out I’m not too smart :/
Answer:
6n^2+3n+8
Step-by-step explanation:
simplify like terms. keep the exponent the same degree it started as
Answer:
the answer is A) 12,6. .
Step-by-step explanation:
.
So, first we multiply the fraction by using the formula a/b times c/d= a times c/b times d
=(y^2-16) times 5y/2y(y-4)
Now, we cancel the common factor y
=(y^2-16) times 5/2(y-4)
Now, we factor 5(y^2-16)
We factor (y^2-16) first
y^2-16
Rewrite 16 as 4^2
y^2-4^2
Now, apply the formula x^2-y^2=(x+y)(x-y)
=y^2-4^2=(y+4)(y-4)
=5(y+4)(y-4)
=5(y+4)(y-4)/2(y-4)
Cancel the common factor y-4
=5(y+4)/2
Answer: 5(y+4)/2