1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Nookie1986 [14]
3 years ago
14

The cost of a car rental is ​$30 per day plus 18c per mile. You are on a daily budget of ​$75. Write and solve an inequality to

find the greatest distance you can drive each day while staying within your budget. Use pencil and paper. Find 2 other​ two-step inequalities with the same solutions
Mathematics
1 answer:
Tanzania [10]3 years ago
8 0

Answer:

2. 5 miles

Step-by-step explanation:

Given that:

Rental cost = $30

Cost per mile driven = 18 cent

Daily budget = $75

Greatest distance you can drive each day while staying within budget :

Rental cost + (cost per mile driven * distance) ≤ daily budget

$30 + 18d ≤ $75

18d ≤ 75 - 30

18d ≤ 45

d ≤ 45 / 18

d ≤ 2.5

Greatest distance you can drive each day while staying within budget is 2.5 miles.

You might be interested in
What is 563 divided by 0.4
Elenna [48]
563/.4 is equal to 1,407.5
8 0
3 years ago
Read 2 more answers
100 POINTS AND BRAINLIEST. I need help ASAP.
Svetach [21]

Answer:

Step-by-step explanation:

First what we must do is rewrite the table to find a solution:

0.25^x −0.75x+1

   64     3.25

   16     2.5

    4      1.75

    1      1

 0.25     0.25

 0.0625 −0.5  

 0.015625  −1.25

We see where the values of the function are the same:

x = 0 (1)

x = 1 (0.25)

answer:

x = 0

x = 1

4 0
2 years ago
Write three different integer addition expressions that equal –5.
podryga [215]

Answer:

1. 5 + (-10)

2. -8 + 3

3. -7 + 2

5 0
3 years ago
99 POINT QUESTION, PLUS BRAINLIEST!!!
VladimirAG [237]
First, we have to convert our function (of x) into a function of y (we revolve the curve around the y-axis). So:


y=100-x^2\\\\x^2=100-y\qquad\bold{(1)}\\\\\boxed{x=\sqrt{100-y}}\qquad\bold{(2)} \\\\\\0\leq x\leq10\\\\y=100-0^2=100\qquad\wedge\qquad y=100-10^2=100-100=0\\\\\boxed{0\leq y\leq100}

And the derivative of x:

x'=\left(\sqrt{100-y}\right)'=\Big((100-y)^\frac{1}{2}\Big)'=\dfrac{1}{2}(100-y)^{-\frac{1}{2}}\cdot(100-y)'=\\\\\\=\dfrac{1}{2\sqrt{100-y}}\cdot(-1)=\boxed{-\dfrac{1}{2\sqrt{100-y}}}\qquad\bold{(3)}

Now, we can calculate the area of the surface:

A=2\pi\int\limits_0^{100}\sqrt{100-y}\sqrt{1+\left(-\dfrac{1}{2\sqrt{100-y}}\right)^2}\,\,dy=\\\\\\= 2\pi\int\limits_0^{100}\sqrt{100-y}\sqrt{1+\dfrac{1}{4(100-y)}}\,\,dy=(\star)

We could calculate this integral (not very hard, but long), or use (1), (2) and (3) to get:

(\star)=2\pi\int\limits_0^{100}1\cdot\sqrt{100-y}\sqrt{1+\dfrac{1}{4(100-y)}}\,\,dy=\left|\begin{array}{c}1=\dfrac{-2\sqrt{100-y}}{-2\sqrt{100-y}}\end{array}\right|= \\\\\\= 2\pi\int\limits_0^{100}\dfrac{-2\sqrt{100-y}}{-2\sqrt{100-y}}\cdot\sqrt{100-y}\cdot\sqrt{1+\dfrac{1}{4(100-y)}}\,\,dy=\\\\\\ 2\pi\int\limits_0^{100}-2\sqrt{100-y}\cdot\sqrt{100-y}\cdot\sqrt{1+\dfrac{1}{4(100-y)}}\cdot\dfrac{dy}{-2\sqrt{100-y}}=\\\\\\

=2\pi\int\limits_0^{100}-2\big(100-y\big)\cdot\sqrt{1+\dfrac{1}{4(100-y)}}\cdot\left(-\dfrac{1}{2\sqrt{100-y}}\, dy\right)\stackrel{\bold{(1)}\bold{(2)}\bold{(3)}}{=}\\\\\\= \left|\begin{array}{c}x=\sqrt{100-y}\\\\x^2=100-y\\\\dx=-\dfrac{1}{2\sqrt{100-y}}\, \,dy\\\\a=0\implies a'=\sqrt{100-0}=10\\\\b=100\implies b'=\sqrt{100-100}=0\end{array}\right|=\\\\\\= 2\pi\int\limits_{10}^0-2x^2\cdot\sqrt{1+\dfrac{1}{4x^2}}\,\,dx=(\text{swap limits})=\\\\\\

=2\pi\int\limits_0^{10}2x^2\cdot\sqrt{1+\dfrac{1}{4x^2}}\,\,dx= 4\pi\int\limits_0^{10}\sqrt{x^4}\cdot\sqrt{1+\dfrac{1}{4x^2}}\,\,dx=\\\\\\= 4\pi\int\limits_0^{10}\sqrt{x^4+\dfrac{x^4}{4x^2}}\,\,dx= 4\pi\int\limits_0^{10}\sqrt{x^4+\dfrac{x^2}{4}}\,\,dx=\\\\\\= 4\pi\int\limits_0^{10}\sqrt{\dfrac{x^2}{4}\left(4x^2+1\right)}\,\,dx= 4\pi\int\limits_0^{10}\dfrac{x}{2}\sqrt{4x^2+1}\,\,dx=\\\\\\=\boxed{2\pi\int\limits_0^{10}x\sqrt{4x^2+1}\,dx}

Calculate indefinite integral:

\int x\sqrt{4x^2+1}\,dx=\int\sqrt{4x^2+1}\cdot x\,dx=\left|\begin{array}{c}t=4x^2+1\\\\dt=8x\,dx\\\\\dfrac{dt}{8}=x\,dx\end{array}\right|=\int\sqrt{t}\cdot\dfrac{dt}{8}=\\\\\\=\dfrac{1}{8}\int t^\frac{1}{2}\,dt=\dfrac{1}{8}\cdot\dfrac{t^{\frac{1}{2}+1}}{\frac{1}{2}+1}=\dfrac{1}{8}\cdot\dfrac{t^\frac{3}{2}}{\frac{3}{2}}=\dfrac{2}{8\cdot3}\cdot t^\frac{3}{2}=\boxed{\dfrac{1}{12}\left(4x^2+1\right)^\frac{3}{2}}

And the area:

A=2\pi\int\limits_0^{10}x\sqrt{4x^2+1}\,dx=2\pi\cdot\dfrac{1}{12}\bigg[\left(4x^2+1\right)^\frac{3}{2}\bigg]_0^{10}=\\\\\\= \dfrac{\pi}{6}\left[\big(4\cdot10^2+1\big)^\frac{3}{2}-\big(4\cdot0^2+1\big)^\frac{3}{2}\right]=\dfrac{\pi}{6}\Big(\big401^\frac{3}{2}-1^\frac{3}{2}\Big)=\boxed{\dfrac{401^\frac{3}{2}-1}{6}\pi}

Answer D.
6 0
4 years ago
Read 2 more answers
Please help. asap. will mark brainliest
Dahasolnce [82]

Answer:

option 1 and option 2 should be correct

5 0
3 years ago
Other questions:
  • What is 91 divided by 0.7
    14·2 answers
  • A triangle ABC with vertices A (1,5) B (5,2) And C (-1,2) is rotated 90o what are the coordinates of B
    11·2 answers
  • What is 48 divided by 7/8
    12·2 answers
  • What is the sum of -2.2 and 0.44?
    5·1 answer
  • Can someone please help me ASAP?
    7·1 answer
  • I've literally asked this question 5 times lol. Can someone please help me?
    8·2 answers
  • Mary gets a $15 allowance each week. She also earns extra money by washing cars. She earns $5 for every car she washes. Each wee
    9·1 answer
  • The probability distribution histogram shows the number of trees in yards in a certain neighborhood.
    8·1 answer
  • Please answer correctly !!!!! Will mark Brianliest !!!!!!!!!!!!!!
    14·2 answers
  • HELP. How much water is needed to fill a water tank that is 15 feet long, 8 feet wide, and 4 feet deep.
    5·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!