1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Tanya [424]
3 years ago
7

Compare and contrast the life of a star that has a mass the of a star that has a mass similar to our Sun with the life of a star

more massive than our Sun.
Biology
2 answers:
Nimfa-mama [501]3 years ago
6 0

Answer:

Big star

Explanation:

Vesnalui [34]3 years ago
4 0
Helloyo!


Massive Star

They are typically greater then 8 molar masses. They typically have a quick main sequence phase, a short red supergiant phase and a death of a spectacular Cosmic event: Supernova. From there they can either become Neutron Stars or Black Holes

Medium-Sized Star

They usually have a Normal Main Sequence phase (Billions of years). From there they bevome Red Giants and expell their mass in a planetary nebula. From there they shrink and become white dwarfs first, then black dwarfs.


Hope it helps ya




...though astronomy is actually physics btw...
You might be interested in
Why would small plants attach themselves to the sides of large trees high above the ground
miskamm [114]

Answer:

7nzjjsnsbswnwbbwskkekeksi

5 0
3 years ago
Read 2 more answers
A nurse co worker who uses passive aggressive communication
likoan [24]
<span>Answer: Passive aggressive communication avoids honest, direct communication and expresses her concerns to others in an attempt to make other people look bad.</span>
4 0
3 years ago
Which phenotypic change is genetic?
Westkost [7]

B. The flower color in a population changes over time.
6 0
3 years ago
Read 2 more answers
Describe how blood is pumped and circulated through the body. Include the roles of the various chambers of the heart, the major
Korvikt [17]

The heart is a pump, usually beating about 60 to 100 times per minute. With each heartbeat, the heart sends blood throughout our bodies, carrying oxygen to every cell. After delivering the oxygen, the blood returns to the heart. The heart then sends the blood to the lungs to pick up more oxygen. This cycle repeats over and over again.

The circulatory system is made up of blood vessels that carry blood away from and towards the heart. Arteries carry blood away from the heart and veins carry blood back to the heart.

The circulatory system carries oxygen, nutrients, and hormones to cells, and removes waste products, like carbon dioxide. These roadways travel in one direction only, to keep things going where they should.

The heart has four chambers — two on top and two on bottom:

The two bottom chambers are the right ventricle and the left ventricle. These pump blood out of the heart. A wall called the interventricular septum is between the two ventricles.

The two top chambers are the right atrium and the left atrium. They receive the blood entering the heart. A wall called the interatrial septum is between the atria.

The atria are separated from the ventricles by the atrioventricular valves:

The tricuspid valve separates the right atrium from the right ventricle.

The mitral valve separates the left atrium from the left ventricle.

Two valves also separate the ventricles from the large blood vessels that carry blood leaving the heart:

The pulmonic valve is between the right ventricle and the pulmonary artery, which carries blood to the lungs.

The aortic valve is between the left ventricle and the aorta, which carries blood to the body.

What Are the Parts of the Circulatory System?

Two pathways come from the heart:

The pulmonary circulation is a short loop from the heart to the lungs and back again.

The systemic circulation carries blood from the heart to all the other parts of the body and back again.

In pulmonary circulation:

The pulmonary artery is a big artery that comes from the heart. It splits into two main branches, and brings blood from the heart to the lungs. At the lungs, the blood picks up oxygen and drops off carbon dioxide. The blood then returns to the heart through the pulmonary veins.

In systemic circulation:

Next, blood that returns to the heart has picked up lots of oxygen from the lungs. So it can now go out to the body. The aorta is a big artery that leaves the heart carrying this oxygenated blood. Branches off of the aorta send blood to the muscles of the heart itself, as well as all other parts of the body. Like a tree, the branches gets smaller and smaller as they get farther from the aorta.

At each body part, a network of tiny blood vessels called capillaries connects the very small artery branches to very small veins. The capillaries have very thin walls, and through them, nutrients and oxygen are delivered to the cells. Waste products are brought into the capillaries.

Capillaries then lead into small veins. Small veins lead to larger and larger veins as the blood approaches the heart. Valves in the veins keep blood flowing in the correct direction. Two large veins that lead into the heart are the superior vena cava and inferior vena cava. (The terms superior and inferior don't mean that one vein is better than the other, but that they're located above and below the heart.)

Once the blood is back in the heart, it needs to re-enter the pulmonary circulation and go back to the lungs to drop off the carbon dioxide and pick up more oxygen.

How Does the Heart Beat?

The heart gets messages from the body that tell it when to pump more or less blood depending on a person's needs. For example, when you're sleeping, it pumps just enough to provide for the lower amounts of oxygen needed by your body at rest. But when you're exercising, the heart pumps faster so that your muscles get more oxygen and can work harder.

How the heart beats is controlled by a system of electrical signals in the heart. The sinus (or sinoatrial) node is a small area of tissue in the wall of the right atrium. It sends out an electrical signal to start the contracting (pumping) of the heart muscle. This node is called the pacemaker of the heart because it sets the rate of the heartbeat and causes the rest of the heart to contract in its rhythm.

4 0
3 years ago
What factors influence the input and output of carbon through earth's spheres?
xz_007 [3.2K]
What factors influence the input and output of carbon through Earth's spheres? The oceans on Earth act as carbon sinks. The combustion of fossil fuels contributions to an increase in atmospheric carbon dioxide. Animals are solely responsible for the release of carbon dioxide via respiration
8 0
3 years ago
Other questions:
  • Which of the following statements is FALSE? a. In the lag phase, cell death exceeds cell division. b. In the death phase, bacter
    10·1 answer
  • Which of these structures is a separate generation from the plant sporophyte?
    12·2 answers
  • Scientists hypothesize that prokaryotes evolved before eukaryotes because
    9·1 answer
  • Why do breeders look at pedigrees before breeding dogs? Or in different words, how do pedigrees play a part in breeding dogs?
    5·1 answer
  • When making a Punnett square the alleles of the mother and father are written at the top and side of the four square box. True o
    6·2 answers
  • -Present-day mitochondria and chloroplasts probably evolved as a consequence of early endosymbiosis: the ancestor of the eukaryo
    11·1 answer
  • What is the site of cellular respiration ?​
    12·1 answer
  • How many skull bone in human body?​
    13·2 answers
  • In three to five sentences, describe how a diagram of Earth’s water cycle demonstrates interactions among the biosphere, the lit
    7·1 answer
  • How is an oxbow lake formed? a. An oxbow lake is formed when a lake shrinks due to erosion. B. An oxbow lake is formed when the
    13·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!