Answer:
it is C)15x - 175 < 10
Step-by-step explanation:
Answer:
$675
$850
$1200
Step-by-step explanation:
Use formula for simple interest:
A = P (1+rt)
where
A = accrued amount (principal + interest) = what we want to find
P = Principal (initial) amount = Given as $500
r = rate of interest = Given as 7% = 0.07
t = time
For 5 years, t = 5
A = 500 [ 1 + 0.07(5) ] = $675
For 10 years, t = 10
A = 500 [ 1 + 0.07(10) ] = $850
For 20 years, t = 20
A = 500 [ 1 + 0.07(20) ] = $1200
Answer:
n squared + 3n + 1
Step-by-step explanation:
5,11,19,29
Firstly look at the difference between each number. The first difference is 6 then 8 then 10 etc. After that you look at your created sequence - 6,8,10 etc. The difference is 2 each time. Then applying rules, you have to do the constant difference divided by 2 to get a coefficient of n squared. So in this case it's n squared because 2/2 = 1 so you don't have to place a 1 in front of the n squared. After you create a sequence from the n squared. That would be 1,4,9 etc. Then you need to see how to get from the sequence: 1,4,9 etc to your original sequence: 5,11,19 etc. So if you calculate it you will get 4,7,10 because firstly 5-1 = 4 then 11-4 = 7 etc. The sequence 4,7,10 is a linear sequence so the constant difference is 3 each time. So to get a nth term of a linear sequence you will start off as 3n then you will substitute 1 then 2 then 3 into the 3n. Therefore that would be 3,6 etc. So if you take the first substituted term, that would be 3 as said before then you will have to see how to get from the 3 to 4 so that is just adding 1. So the nth term of this linear sequence is 3n + 1. Check if it works at the end. So the overall nth term of the quadratic sequence is n squared as said before + 3n + 1.