a) The solution of this <em>ordinary</em> differential equation is
.
b) The integrating factor for the <em>ordinary</em> differential equation is
.
The <em>particular</em> solution of the <em>ordinary</em> differential equation is
.
<h3>
How to solve ordinary differential equations</h3>
a) In this case we need to separate each variable (
) in each side of the identity:
(1)
![6\int {\frac{dy}{y^{4}} } = \int {\sin^{4}t} \, dt + C](https://tex.z-dn.net/?f=6%5Cint%20%7B%5Cfrac%7Bdy%7D%7By%5E%7B4%7D%7D%20%7D%20%3D%20%5Cint%20%7B%5Csin%5E%7B4%7Dt%7D%20%5C%2C%20dt%20%2B%20C)
Where
is the integration constant.
By table of integrals we find the solution for each integral:
![-\frac{2}{y^{3}} = \frac{3\cdot t}{8}-\frac{\sin 2t}{4}+\frac{\sin 4t}{32} + C](https://tex.z-dn.net/?f=-%5Cfrac%7B2%7D%7By%5E%7B3%7D%7D%20%3D%20%5Cfrac%7B3%5Ccdot%20t%7D%7B8%7D-%5Cfrac%7B%5Csin%202t%7D%7B4%7D%2B%5Cfrac%7B%5Csin%204t%7D%7B32%7D%20%2B%20C)
If we know that
and
<em>, </em>then the integration constant is
.
The solution of this <em>ordinary</em> differential equation is
. ![\blacksquare](https://tex.z-dn.net/?f=%5Cblacksquare)
b) In this case we need to solve a first order ordinary differential equation of the following form:
(2)
Where:
- Integrating factor
- Particular function
Hence, the ordinary differential equation is equivalent to this form:
(3)
The integrating factor for the <em>ordinary</em> differential equation is
. ![\blacksquare](https://tex.z-dn.net/?f=%5Cblacksquare)
The solution for (2) is presented below:
(4)
Where
is the integration constant.
If we know that
and
, then the solution of the ordinary differential equation is:
![y = x \int {x^{-1}\cdot \left(x^{2}+\frac{1}{x} \right)} \, dx + C](https://tex.z-dn.net/?f=y%20%3D%20x%20%5Cint%20%7Bx%5E%7B-1%7D%5Ccdot%20%5Cleft%28x%5E%7B2%7D%2B%5Cfrac%7B1%7D%7Bx%7D%20%5Cright%29%7D%20%5C%2C%20dx%20%2B%20C)
![y = x\int {x} \, dx + x\int\, dx + C](https://tex.z-dn.net/?f=y%20%3D%20x%5Cint%20%7Bx%7D%20%5C%2C%20dx%20%2B%20x%5Cint%5C%2C%20dx%20%2B%20C)
![y = \frac{x^{3}}{2}+x^{2}+C](https://tex.z-dn.net/?f=y%20%3D%20%5Cfrac%7Bx%5E%7B3%7D%7D%7B2%7D%2Bx%5E%7B2%7D%2BC)
If we know that
and
, then the particular solution is:
![y = \frac{x^{3}}{2}+x^{2}-\frac{5}{2}](https://tex.z-dn.net/?f=y%20%3D%20%5Cfrac%7Bx%5E%7B3%7D%7D%7B2%7D%2Bx%5E%7B2%7D-%5Cfrac%7B5%7D%7B2%7D)
The <em>particular</em> solution of the <em>ordinary</em> differential equation is
. ![\blacksquare](https://tex.z-dn.net/?f=%5Cblacksquare)
To learn more on ordinary differential equations, we kindly invite to check this verified question: brainly.com/question/25731911