Answer:
Probability that the average weight of a bar in a Simple Random Sample (SRS) with five of these chocolate bars is between 7.64 and 7.9 ounces is 0.9235.
Step-by-step explanation:
We are given that the distribution of actual weights of 8-oz chocolate bars produced by a certain machine is normal with mean 7.8 ounces and standard deviation 0.15 ounces.
A simple random sample of five of these chocolate bars is taken.
<em>Let </em>
<em> = sample average weight of a bar</em>
The z-score probability distribution for sample mean is given by;
Z =
~ N(0,1)
where,
= average weight = 7.8 ounces
= standard deviation = 0.15 ounces
n = sample of chocolate bars = 5
The Z-score measures how many standard deviations the measure is away from the mean. After finding the Z-score, we look at the z-score table and find the p-value (area) associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X.
So, probability that the the average weight of a bar in a Simple Random Sample (SRS) with five of these chocolate bars is between 7.64 and 7.9 ounces is given by = P(7.64 ounces <
< 7.90 ounces)
P(7.64 ounces <
< 7.90 ounces) = P(
< 7.90) - P(
7.64)
P(
< 7.90) = P(
<
) = P(Z < 1.49) = 0.93189 {using z table}
P(
7.64) = P(
) = P(Z
-2.39) = 1 - P(Z < 2.39)
= 1 - 0.99158 = 0.00842
<em>The above probability is calculated by looking at the value of x = 2.39 and x = 1.49 in the z table which has an area of 0.99158 and 0.93189 respectively.</em>
Therefore, P(7.64 ounces <
< 7.90 ounces) = 0.93189 - 0.00842 = 0.9235.