1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
frez [133]
3 years ago
5

What is the Tan J? URGENT HELP PLS

Mathematics
1 answer:
BARSIC [14]3 years ago
8 0

Answer:

4th Option, \frac{12}{5}

Hope this helps!

You might be interested in
Joe takes out a loan for $19,000. He will pay the loan back monthly. The interest rate is 7.6% per year and the length of the lo
Y_Kistochka [10]
I believe it should be 8,000
6 0
2 years ago
When 23 is subtracted from 5 times a certain number the result is 87
allsm [11]
5x-23=87
add 23 to both sides
5x=110
divide both sides by 5
x=22

To check your answer...
5(22)-23=87
110-23=87
87=87
8 0
3 years ago
one-third of the people from country A claim that they are from country B, and the rest admit they are from country A. One-fourt
In-s [12.5K]

Answer: 3 : 2

Step-by-step explanation:

Let A represents the total population of country A and B represents the total population of country B.

According to the question,

 \text{The population of country A that admit they are from B} = \frac{1}{3}\text{ of }A

⇒ \text{ The population of A that admit they are from country A }= A - \frac{1}{3} \text{ of } A

= \frac{3-1}{3} A

= \frac{2}{3} A

\text{The population of country B that admit they are from A} = \frac{1}{4}\text{ of }B

⇒ \text{ The total population that claims that they are from A }= \frac{2}{3} A +\frac{1}{4} B

But, Again according to the question,

The total population that claims that they are from A =  one half of the total population of A and B.

⇒ \frac{2}{3} A + \frac{1}{4} B= \frac{1}{2}(A+B)

⇒ \frac{2}{3} A + \frac{1}{4} B= \frac{1}{2}A+\frac{1}{2}B

⇒ \frac{2}{3} A + \frac{1}{4} B= \frac{1}{2}A+\frac{1}{2}B

⇒ \frac{2}{3} A - \frac{1}{2}A= \frac{1}{2}B-\frac{1}{4} B

⇒ \frac{4}{6} A - \frac{3}{6}A= \frac{2}{4}B-\frac{1}{4} B

⇒ \frac{1}{6} A = \frac{1}{4} B

⇒ A =\frac{6}{4}B

⇒ \frac{A}{B} =\frac{3}{2}

8 0
3 years ago
99 POINT QUESTION, PLUS BRAINLIEST!!!
VladimirAG [237]
First, we have to convert our function (of x) into a function of y (we revolve the curve around the y-axis). So:


y=100-x^2\\\\x^2=100-y\qquad\bold{(1)}\\\\\boxed{x=\sqrt{100-y}}\qquad\bold{(2)} \\\\\\0\leq x\leq10\\\\y=100-0^2=100\qquad\wedge\qquad y=100-10^2=100-100=0\\\\\boxed{0\leq y\leq100}

And the derivative of x:

x'=\left(\sqrt{100-y}\right)'=\Big((100-y)^\frac{1}{2}\Big)'=\dfrac{1}{2}(100-y)^{-\frac{1}{2}}\cdot(100-y)'=\\\\\\=\dfrac{1}{2\sqrt{100-y}}\cdot(-1)=\boxed{-\dfrac{1}{2\sqrt{100-y}}}\qquad\bold{(3)}

Now, we can calculate the area of the surface:

A=2\pi\int\limits_0^{100}\sqrt{100-y}\sqrt{1+\left(-\dfrac{1}{2\sqrt{100-y}}\right)^2}\,\,dy=\\\\\\= 2\pi\int\limits_0^{100}\sqrt{100-y}\sqrt{1+\dfrac{1}{4(100-y)}}\,\,dy=(\star)

We could calculate this integral (not very hard, but long), or use (1), (2) and (3) to get:

(\star)=2\pi\int\limits_0^{100}1\cdot\sqrt{100-y}\sqrt{1+\dfrac{1}{4(100-y)}}\,\,dy=\left|\begin{array}{c}1=\dfrac{-2\sqrt{100-y}}{-2\sqrt{100-y}}\end{array}\right|= \\\\\\= 2\pi\int\limits_0^{100}\dfrac{-2\sqrt{100-y}}{-2\sqrt{100-y}}\cdot\sqrt{100-y}\cdot\sqrt{1+\dfrac{1}{4(100-y)}}\,\,dy=\\\\\\ 2\pi\int\limits_0^{100}-2\sqrt{100-y}\cdot\sqrt{100-y}\cdot\sqrt{1+\dfrac{1}{4(100-y)}}\cdot\dfrac{dy}{-2\sqrt{100-y}}=\\\\\\

=2\pi\int\limits_0^{100}-2\big(100-y\big)\cdot\sqrt{1+\dfrac{1}{4(100-y)}}\cdot\left(-\dfrac{1}{2\sqrt{100-y}}\, dy\right)\stackrel{\bold{(1)}\bold{(2)}\bold{(3)}}{=}\\\\\\= \left|\begin{array}{c}x=\sqrt{100-y}\\\\x^2=100-y\\\\dx=-\dfrac{1}{2\sqrt{100-y}}\, \,dy\\\\a=0\implies a'=\sqrt{100-0}=10\\\\b=100\implies b'=\sqrt{100-100}=0\end{array}\right|=\\\\\\= 2\pi\int\limits_{10}^0-2x^2\cdot\sqrt{1+\dfrac{1}{4x^2}}\,\,dx=(\text{swap limits})=\\\\\\

=2\pi\int\limits_0^{10}2x^2\cdot\sqrt{1+\dfrac{1}{4x^2}}\,\,dx= 4\pi\int\limits_0^{10}\sqrt{x^4}\cdot\sqrt{1+\dfrac{1}{4x^2}}\,\,dx=\\\\\\= 4\pi\int\limits_0^{10}\sqrt{x^4+\dfrac{x^4}{4x^2}}\,\,dx= 4\pi\int\limits_0^{10}\sqrt{x^4+\dfrac{x^2}{4}}\,\,dx=\\\\\\= 4\pi\int\limits_0^{10}\sqrt{\dfrac{x^2}{4}\left(4x^2+1\right)}\,\,dx= 4\pi\int\limits_0^{10}\dfrac{x}{2}\sqrt{4x^2+1}\,\,dx=\\\\\\=\boxed{2\pi\int\limits_0^{10}x\sqrt{4x^2+1}\,dx}

Calculate indefinite integral:

\int x\sqrt{4x^2+1}\,dx=\int\sqrt{4x^2+1}\cdot x\,dx=\left|\begin{array}{c}t=4x^2+1\\\\dt=8x\,dx\\\\\dfrac{dt}{8}=x\,dx\end{array}\right|=\int\sqrt{t}\cdot\dfrac{dt}{8}=\\\\\\=\dfrac{1}{8}\int t^\frac{1}{2}\,dt=\dfrac{1}{8}\cdot\dfrac{t^{\frac{1}{2}+1}}{\frac{1}{2}+1}=\dfrac{1}{8}\cdot\dfrac{t^\frac{3}{2}}{\frac{3}{2}}=\dfrac{2}{8\cdot3}\cdot t^\frac{3}{2}=\boxed{\dfrac{1}{12}\left(4x^2+1\right)^\frac{3}{2}}

And the area:

A=2\pi\int\limits_0^{10}x\sqrt{4x^2+1}\,dx=2\pi\cdot\dfrac{1}{12}\bigg[\left(4x^2+1\right)^\frac{3}{2}\bigg]_0^{10}=\\\\\\= \dfrac{\pi}{6}\left[\big(4\cdot10^2+1\big)^\frac{3}{2}-\big(4\cdot0^2+1\big)^\frac{3}{2}\right]=\dfrac{\pi}{6}\Big(\big401^\frac{3}{2}-1^\frac{3}{2}\Big)=\boxed{\dfrac{401^\frac{3}{2}-1}{6}\pi}

Answer D.
6 0
3 years ago
Read 2 more answers
Janelle has 5 hours to spend training for an upcoming race. She completes her training by running full speed the distance of the
VikaD [51]

Answer:

The distance cover by him walking back is 11.25 miles

Step-by-step explanation:

Given as :

Time for Janelle to spend on training = 5 hours

The  running speed of Janelle = 9 mph

The walking back with 3 mph

Let The distance for running and walking is same i.e  D miles

SO, Time = \frac{Distance}{Speed}

∴  5 =  \frac{D}{9} +  \frac{D}{3}

Or, 5 × 9 = D + 3 D

Or, 45 = 4 D

∴   D = \frac{45}{4} = 11.25 miles

Hence The distance cover by him walking back is 11.25 miles   Answer

6 0
3 years ago
Other questions:
  • Hannah can paint a room in 20 hours. Destiny can paint the same room in 16 hours. How long does it take for both Hannah and Dest
    5·1 answer
  • 6 sheep or 8 cows can graze a field in 34 days. How long would 9 sheep and 5 cows take to graze the same field?
    8·2 answers
  • Write 7x10x10x10x10 with an exponent
    6·2 answers
  • What is the solution set of {xlx<-3}{xlx>5)?
    14·1 answer
  • A rectangle has an area of 36 square centimeters and a length of 9 centimeters.
    13·2 answers
  • 3/8 multiplied by 4/11
    8·2 answers
  • Is this number rational or irrational? 2/5 squared <br><br> A.rational<br><br> B.irrational
    12·1 answer
  • Maya is driving 120 miles to her grandmother’s house. She drives 35% of the distance before stopping for lunch. How far does she
    9·2 answers
  • A+B=3<br> A•C+B=18<br> B•C+A=6<br> A=<br> B=<br> C=
    9·1 answer
  • Write 75 as a product of prime use index notation when giving your answer
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!