Answers:
x = 72
y = 83
============================================================
Explanation:
Angle VFG is 50 degrees. The angle adjacent to this is angle EFG which is 180-50 = 130 degrees.
Angle HDW is 77 degrees. The supplementary angle adjacent to this is 180-77 = 103 degrees which is angle EDH.
Pentagon EFGHD has the following five interior angles
- E = x
- F = 130
- G = 170
- H = 65
- D = 103
Note that angles F = 130 and D = 103 were angles EFG and EDH we calculated earlier.
For any pentagon, the interior angles always add to 180(n-2) = 180(5-2) = 180*3 = 540 degrees.
This means,
E+F+G+H+D = 540
x+130+170+65+103 = 540
x+468 = 540
x = 72
---------------------------------------
Now focus your attention on triangle THS
We see that the interior angles are
The angle H is 65 degrees because it's paired with the other 65 degree angle shown. They are vertical angles.
For any triangle, the angles always add to 180
T+H+S = 180
y+65+32 = 180
y+97 = 180
y = 180-97
y = 83
Answer:
New coordinates for A - (2, -5)
New coordinates for B - (5, -3)
Step-by-step explanation:
When translating a point to the 7 units right, you must add 7 to the x coordinate. When translating a point 8 units down you must subtract 8 from the y coordinate.
Answer: option B. it has the highest y-intercept.
Explanation:
1) point -slope equation of the line
y - y₁ = m (x - x₁)
2) Replace (x₁, y₁) with the point (5,3):
y - 5 = m (x - 3)
3) Expand using distributive property and simplify:
y - 5 = mx - 3m ⇒ y = mx + 5 - 3m
4) Compare with the slope-intercept equation of the line: y = mx + b, where m is the slope and b is the y-intercept
⇒ slope = m
⇒ b = 5 - 3m = y - intercept.
Therefore, for the same point (5,3), the greater m (the slope of the line) the less b (the y-intercept); and the smaller m (the slope) the greater the y - intercept.
Then, the conclusion is: the linear function with the smallest slope has the highest y-intercept (option B).
Answer:
8.7 units
Step-by-step explanation:
Given is a right angled triangle (because the segment with 5 units length is tangent to circle. Tangent is perpendicular to RADIUS or diameter)
Let the length of the diameter be d units
By Pythagoras Theorem:

Answer:
Step-by-step explanation: