The equation is just 5 3/4 times 3 1/3. You make the denominators the same by multiplying them by each other. It will be 5 3/12 times 3 1/12. Now you times these two together. You can do this part yourself because it will be confusing on here. I hope i helped atleast a little.
<span>h<span>(t)</span>=<span>t<span>34</span></span>−3<span>t<span>14</span></span></span>
Note that the domain of h is <span>[0,∞]</span>.
By differentiating,
<span>h'<span>(t)</span>=<span>34</span><span>t<span>−<span>14</span></span></span>−<span>34</span><span>t<span>−<span>34</span></span></span></span>
by factoring out <span>34</span>,
<span>=<span>34</span><span>(<span>1<span>t<span>14</span></span></span>−<span>1<span>t<span>34</span></span></span>)</span></span>
by finding the common denominator,
<span>=<span>34</span><span><span><span>t<span>12</span></span>−1</span><span>t<span>34</span></span></span>=0</span>
<span>⇒<span>t<span>12</span></span>=1⇒t=1</span>
Since <span>h'<span>(0)</span></span> is undefined, <span>t=0</span> is also a critical number.
Hence, the critical numbers are <span>t=0,1</span>.
I hope that this was helpful.
Answer: Volume is 4308.1 in³
Step-by-step explanation: Volume is pii· r²·h = 3.14 · (14 in)²·7 in
Make a change of coordinates:


The Jacobian for this transformation is

and has a determinant of

Note that we need to use the Jacobian in the other direction; that is, we've computed

but we need the Jacobian determinant for the reverse transformation (from

to

. To do this, notice that

we need to take the reciprocal of the Jacobian above.
The integral then changes to

Answer:
Step-by-step explanation:
um