If there are 12 items adding up to 60%, we want to know how many items more it will take to equal 100% So set up this equation 12/x = .6 then solve for x. x=12/.6 x = 20 now that we know the total you can subtract 12 from 20 and get 8, that is the number of items left on the list.
Answer:
The answer is 35
Step-by-step explanation:
If you do 15 divided by 3/7 you herb 35 you can check it by doing 3/7 of 35 and you get 15
Answer:
200 in.
Step-by-step explanation:
1250/75=5000/300=50/3 simplification
50*12=600 conversion to inches
600/3=200 simplification
2(1/3+6a)
this is the answer
<h3>
Answer:</h3>
- <u>20</u> kg of 20%
- <u>80</u> kg of 60%
<h3>
Step-by-step explanation:</h3>
I like to use a little X diagram to work mixture problems like this. The constituent concentrations are on the left; the desired mix is in the middle, and the right legs of the X show the differences along the diagonal. These are the ratio numbers for the constituents. Reducing the ratio 32:8 gives 4:1, which totals 5 "ratio units". We need a total of 100 kg of alloy, so each "ratio unit" stands for 100 kg/5 = 20 kg of constituent.
That is, we need 80 kg of 60% alloy and 20 kg of 20% alloy for the product.
_____
<em>Using an equation</em>
If you want to write an equation for the amount of contributing alloy, it works best to let a variable represent the quantity of the highest-concentration contributor, the 60% alloy. Using x for the quantity of that (in kg), the amount of copper in the final alloy is ...
... 0.60x + 0.20(100 -x) = 0.52·100
... 0.40x = 32 . . . . . . . . . . .collect terms, subtract 20
... x = 32/0.40 = 80 . . . . . kg of 60% alloy
... (100 -80) = 20 . . . . . . . .kg of 20% alloy