Answer:
For a point defined bt a radius R, and an angle θ measured from the positive x-axis (like the one in the image)
The transformation to rectangular coordinates is written as:
x = R*cos(θ)
y = R*sin(θ)
Here we are in the unit circle, so we have a radius equal to 1, so R = 1.
Then the exact coordinates of the point are:
(cos(θ), sin(θ))
2) We want to mark a point Q in the unit circle sch that the tangent has a value of 0.
Remember that:
tan(x) = sin(x)/cos(x)
So if sin(x) = 0, then:
tan(x) = sin(x)/cos(x) = 0/cos(x) = 0
So tan(x) is 0 in the points such that the sine function is zero.
These values are:
sin(0°) = 0
sin(180°) = 0
Then the two possible points where the tangent is zero are the ones drawn in the image below.
For

to be continuous at

, we need to have

Note that

means that

, but that

is *approaching* 5. We're told that for

, we have

We can write

and the limit would be

and so

is discontinuous.
Answer:
1.) - (4, 4) 2.) - (3,5) Hope this helps!!
Answer:

Step-by-step explanation:

The common denominator of both fractions is 8. Therefore,, divide the denominator of each fraction, then multiply what you get by the numerator of each fraction.
Thus:


